
PART II CODING AND CRYPTOGRAPHY
EXAMPLE SHEET 1

The first 11 examples are minimal to cover the course; you are also encouraged to try questions
12–16.

1 Consider Morse code1:

A 7→ • − ∗ B 7→ − • • • ∗ C 7→ − • − • ∗
D 7→ − • •∗ E 7→ •∗ F 7→ • • − • ∗
O 7→ − −−∗ S 7→ • • •∗ 7 7→ − − • • •∗

Decode − • − • ∗ − −− ∗ − • • ∗ • ∗.
(ii) Consider the ASCII (American Standard Code for Information Interchange):

A 7→ 1000001 B 7→ 1000010 C 7→ 1000011

a 7→ 1100001 b 7→ 1100010 c 7→ 1100011

+ 7→ 0101011 ! 7→ 0100001 7 7→ 0110111

Encode b7!. Decode 110001111000011100010.

2 Consider two alphabets A and B and a coding function c : A → B∗.
(i) Explain, without using the notion of prefix-free codes, why, if c is injective and fixed

length, c is decodable. Explain why, if c is injective and fixed length, c is prefix-free.
(ii) Let A = B = {0, 1}. If c(0) = 0, c(1) = 00 show that c is injective but c∗ is not.
(iii) Let A = {1, 2, 3, 4, 5, 6} and B = {0, 1}. Show that there is a variable length coding

c such that c is injective and all codewords have length 2 or less. Show that there is no
decodable coding c such that all codewords have length 2 or less.

3 (i) Give an example of a decodable code which is not prefix-free.
(ii) Give an example of a non-decodable code which satisfies Kraft’s inequality.
(iii) A comma code (like Morse code) is one where a special letter – comma – occurs at

the end of each codeword and nowhere else. Show that a comma code is prefix-free and give
a direct argument to show that it must satisfy Kraft’s inequality.

4 The product of two codes cj : Aj → B∗
j is the code

g : A1 ×A2 → (B1 ∪ B2)∗

given by g(a1, a2) = c1(a1)c2(a2).
Show that the product of two prefix-free codes is prefix-free, but the product of a de-

codable code and a prefix-free code need not even be decodable.

1After RMS Titanic hit an iceberg at 11.40 pm on 14 April 1912, the wireless operators Jack Philips and
Harold Bride initially transmitted ‘CQD-MGY, sinking, need immediate assistance,’ later interspersed with
the newer ‘SOS’ at the suggestion of Bride (CQD was still a widely understood distress signal at the time, and
MGY was Titanic’s call sign). Morse code was used as an international standard for maritime communication
until 1999, when it was replaced by the Global Maritime Distress Safety System. When the French Navy
ceased using Morse code on 31 January 1997, the final message transmitted was “Calling all. This is our last
cry before our eternal silence”.
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5 (i) Apply Huffman’s algorithm to the nine messages Mj where Mj has probability j/45
for 1 ≤ j ≤ 9.

(ii) Consider four messages with the following properties: M1 has probability .23, M2 has
probability .24, M3 has probability .26 and M4 has probability .27. Show that any assignment
of the codewords 00, 01, 10 and 11 produces a best code in the sense of this course.

6 Consider 64 messages Mj with the following properties: M1 has probability 1/2, M2

has probability 1/4 and Mj has probability 1/248 for 3 6 j 6 64. Explain why, if we use
codewords of equal length, then the length of a codeword must be at least 6. By using the
ideas of Huffman’s algorithm (you should not need to go through all the steps) obtain a set
of codewords such that the expected length of a codeword sent is no more than 3.

7 (i) Let A = {1, 2, 3, 4}. Suppose that the probability that letter k is chosen is k/10. Use
your calculator to find d− log2 pke and write down a Shannon–Fano code c.

(ii) Apply Huffman’s algorithm to the four messages Mj, where Mj has probability j/10
for 1 6 j 6 4. Denoting by cH the Huffman code for this system, show that the entropy is
approximately 1.85, that E|c(A)| = 2.4 and that E|cH(A)| = 1.9. Check that these results
are consistent with the appropriate results in the course.

8 Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes
for messages M1, . . . ,M5 emitted either (a) with equal probabilities, or (b) with probabilities
0.3, 0.3, 0.2, 0.15, 0.05. Compare the expected word lengths in each case.

9 Messages M1, . . . ,M5 are emitted with probabilities 0.4, 0.2, 0.2, 0.1, 0.1. Find an
optimal binary code. Determine whether there are optimal binary codes with (a) all but one
codeword of the same length, or (b) each codeword a different length.

10 You are playing bridge with a partner and two opponents. The pack (of 52 cards) is
dealt to provide 4 hands of 13 cards each. A simple representation for the hand you get would
assign a unique 6-bit binary number to represent each card; then a 78-bit message represents
your hand, a 156-bit message your pair’s hands and a 312-bit message the whole deal. Let’s
try to do better. Assume all possible deals are equally likely. Show that there are 52!/(13!39!)
different hands you might obtain. Show also that there are 52!/(13!)4 different deals.

(i) If the contents of a hand are conveyed by one player to their partner by a series of
nods and shakes of the head how many movements of the head are required? Show that at
least 40 movements are required. Give a simple code requiring 52 movements.

[You may assume for simplicity that the player to whom the information is being com-
municated does not look at her own cards. (In fact this does not make a difference since the
two players do not acquire any shared information by looking at their own cards.)]

(ii) If instead the player uses the initial letters of words (say using the 16 most common
letters), how many words will she need to utter?

11 Show that if an optimal binary code has word lengths s1, s2, . . . sm then

m log2m 6 s1 + s2 + · · ·+ sm 6 (m2 +m− 2)/2.
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12 (i) It is known that exactly one member of the starship U.S.S. Emphasise has contracted
the Macguffin virus. A test is available that will detect the virus at any dilution. However,
the power required is such that the ship’s force shields must be switched off for a minute
during each test. Blood samples are taken from all crew members. The ship’s computer has
worked out that the probability of crew member number i harbouring the virus is pi. (Thus
the probability that the captain, who is, of course, number 1, has the disease is p1.) Explain
how, by testing pooled samples, the expected number of tests can be minimised. Write down
the exact form of the test when there are 2n crew members and pi = 2−n.

(ii) Questions like (i) are rather artificial, since they require that exactly one person
carries the virus. Suppose that the probability that any member of a population of 2n has
a certain disease is p (and that the probability is independent of the health of the others)
and there exists an error free test which can be carried out on pooled blood samples which
indicates the presence of the disease in at least one of the samples or its absence from all.

Explain why there cannot be a testing scheme which can be guaranteed to require less
than 2n tests to diagnose all members of the population. How does the scheme suggested
in the last sentence of (i) need to be modified to take account of the fact that more than
one person may be ill (or, indeed, no one may be ill)? Show that the expected number of
tests required by the modified scheme is no greater than pn2n+1 + 1. Explain why the cost
of testing a large population of size x is no more than about 2pcx log2 x with c the cost of a
test.

(iii) In practice, pooling schemes will be less complicated. Usually a group of x people
are tested jointly and, if the joint test shows the disease, each is tested individually. Explain
why this is not sensible if p is large but is sensible (with a reasonable choice of x) if p is small.
If p is small, explain why there is an optimum value for x. Write down (but do not attempt to
solve) an equation which indicates (in a ‘mathematical methods’ sense) that optimum value
in terms of p, the probability that an individual has the disease.

Schemes like these are only worthwhile if the disease is rare and the test both is expensive
and will work on pooled samples. However, these circumstances do occur together from time
to time and the idea then produces public health benefits much more cheaply than would
otherwise be possible.

13 In the binary case the Huffman code is defined by combining the two letters with smallest
probabilities.

(i) Give the appropriate generalisation of Huffman’s algorithm to an alphabet with a
symbols when you have m messages and m ≡ 1 (mod a− 1).

(ii) Prove that your algorithm gives an optimal solution.
(iii) Extend the algorithm to cover general m by introducing messages of probability

zero.
(iv) Carry this out for a ternary (a = 3) coding of a source with probabilities 0.2, 0.2,

0.15, 0.15, 0.1, 0.1, 0.05, 0.05.
(v) Show that if a ternary decodable code of size m achieves the lower bound in the

Noiseless Coding Theorem then m is odd.
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14 You are given m apparently identical coins, one of which may be a forgery. Counterfeit
coins are either too light or too heavy. You have a balance, on which you may place any
of the coins you like and determine whether the coins in one pan are together lighter than,
heavier than or the same weight as those in the other. Using the balance you wish to detect
whether there is a forgery and, if so, which coin it is and whether it is lighter or heavier.

Prove that, in any system of weighings which solves this problem, the maximum number
of weighings involved cannot be less than log3(2m+ 1).

[Optional] Show that for m = 12 three weighings suffice. [This problem ‘is said to have
been planted during the war . . . by enemy agents since Operational Research spent so many
man-hours on its solution.’2]

15 Extend the definition of entropy to a random variableX taking values in the non-negative
integers. (You must allow for the possibility of infinite entropy.)

Compute the expected value EY and entropy H(Y ) in the case when Y has the geometric
distribution, that is to say P(Y = k) = pk(1 − p) [0 < p < 1]. Show that, amongst all
random variables X taking values in the non-negative integers with the same expected value
µ [0 < µ <∞], the geometric distribution maximises the entropy.

16 Suppose that a source emits letters from the finite alphabet A = {1, 2, . . . , n}, each letter
i occurring with (known) probability pi > 0. Let S be the random codeword-length when
the message is encoded by a decodable code c : A → B∗ where B is an alphabet of k letters.
It is desired to find a decodable code that minimizes the expected value of kS. Establish the
lower bound (

n∑
i=1

√
pi

)2

≤ E(kS)

and characterise when equality occurs. [Hint: Cauchy–Schwarz, p
1/2
i = p

1/2
i ksi/2k−si/2.]

Prove that an optimal code for the above criterion must satisfy

E(kS) < k

(
n∑

i=1

√
pi

)2

.

[Hint: Look for a code with codeword lengths si = d− logk p
1/2
i /λe for an appropriate λ.]

SM, Lent Term 2012
Comments on and corrections to this sheet may be emailed to sm@dpmms.cam.ac.uk

2The quotation is lifted from Pedoe’s The Gentle Art of Mathematics which also gives an attractive solution.
Niobe, the protagonist of Piers Anthony’s novel With a Tangled Skein, must solve the twelve-coin variation
of this puzzle to find her son in Hell: Satan has disguised the son to look identical to eleven other demons,
and he is heavier or lighter depending on whether he is cursed to lie or able to speak truthfully.


