MATHEMATICAL TRIPOS PART II (2005—06)

Coding and Cryptography - Example Sheet 1 of 4 T.A. Fisher

1)

2)

3)

4)

10)

11)

In a Binary Symmetric Channel (BSC) we usually take the probability p of error to
be less than 1/2. Why do we not consider 1 > p > 1/2? What if p = 1/27

Show that if we connect two Discrete Memoryless Channels (DMC’s) in series or
in parallel then the result is again a DMC. How are the channel matrices related?
[lustrate in the case of two BSC’s with error probabilities p and q.

(i) Give an example of a decipherable code which is not prefix-free. (Hint: What
happens if you reverse all the codewords in a prefix-free code?)

(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.
(iii) Check directly that comma codes satisfy the Kraft inequality.

For a code f : ¥; — Y3 and a code f’: X} — ¥5" the product code is g : 31 x ¥} —
(32 U X5)* given by g(x,y) = f(x)f'(y). Show that the product of two prefix-free
codes is prefix-free, but that the product of a decipherable code and a prefix-free code
need not even be decipherable.

Jensen’s inequality states that if f : R — R is a convex function and pq,...,p, is a
probability distribution (i.e. 0 < p; <1 and Y p; = 1) then fO_ pizi) < > pif(x;)
for any x1,...,x, € R. Deduce Gibbs’ inequality from Jensen’s inequality applied to
the convex function f(x) = —logz.

Show that H(p1,p2,p3) < H(p1) + (1 — p1) and determine when equality occurs.

Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes
for messages p1, ..., us emitted (i) with equal probabilities, or (ii) with probabilities
0.3,0.3,0.2,0.15,0.05. Compare the expected word lengths in each case.

Messages 1, ..., s are emitted with probabilities 0.4,0.2,0.2,0.1,0.1. Determine
whether there are optimal binary codings with (i) all but one codeword of the same
length, or (ii) each codeword a different length.

Show that if an optimal binary code has word lengths s1,...,s,, then
mlogm < 814 ...+ s, < (Mm?* +m —2)/2.

Suppose that a gastric infection is known to originate in exactly one of m restaurants,
the probability it originates in the j* being p;. A health inspector has samples from
all of the m restaurants and by testing the pooled samples from a set A of them can
determine with certainty whether the infection originates in A or its complement. Let
N(p1,...,pm) denote the minimum expected number of such tests needed to locate
the infection. Show that H(p1,...,pm) < N(p1,---,0m) < H(p1,...,pm) + 1, and
determine when the lower bound is attained.

(For those who did IB Optimisation.) Use a Lagrange multiplier to solve the following
constrained optimisation problem: Given p; > 0 with >~ p; = 1 find real numbers
$1,...,Sm to minimise > .* | p;s; subject to Y . a7 < 1.
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Extend the definition of entropy to a random variable taking values in the non-negative
integers. Compute the expected value F(X) and entropy H(X) of a random variable
X with P(X = k) = p(1 —p)*. Show that among non-negative integer valued random
variables with the same expected value, X achieves the maximum possible entropy.

In a horse race with m horses the probability that the i** horse wins is p;. The odds
offered on each horse are a;—for—1, i.e. a bet of 2 pounds on the i*" horse will yield a;x
pounds if the horse wins, and nothing otherwise. A gambler bets a proportion b; of
his wealth on horse ¢, with Y/, b; = 1. He seeks to maximise W = Y"1 | p; log(a;b;).
Suggest a motivation for this choice. Solve to find the b; that maximise W. Show

that in the case of even odds this maximum and the entropy H(p1,...,pm) sum to a
constant.
A source emits messages 1, ..., [, With non-zero probabilities py,...,pm,. Let S be

the codeword length random variable for a decipherable code f : 3; — X3 where
Y1 = {1, fm} and S| = a. Show that the minimum possible value of E(a®)

satisfies (é W—i)Q < B(a¥) < a(é m)

(Hint: The Cauchy-Schwarz inequality.)

2

(i) In lectures we only described Huffman coding in the binary case, i.e. a = 2. In
general we add extra messages of probability zero so that the number of messages
m satisfies m = 1 (mod a — 1). Then at each stage we group together the a small-
est probabilities. Carry this out for a ternary coding of a source with probabilities
0.2,0.2,0.15,0.15,0.1,0.1,0.05, 0.05.

(ii) Show that if a ternary decipherable code of size m meets the lower bound in the
noiseless coding theorem then m is odd.
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