

MATHEMATICAL TRIPOS PART II (2005–06)

Coding and Cryptography - Example Sheet 1 of 4

T.A. Fisher

- 1) In a Binary Symmetric Channel (BSC) we usually take the probability p of error to be less than $1/2$. Why do we not consider $1 \geq p \geq 1/2$? What if $p = 1/2$?
- 2) Show that if we connect two Discrete Memoryless Channels (DMC's) in series or in parallel then the result is again a DMC. How are the channel matrices related? Illustrate in the case of two BSC's with error probabilities p and q .
- 3) (i) Give an example of a decipherable code which is not prefix-free. (Hint: What happens if you reverse all the codewords in a prefix-free code?)
(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.
(iii) Check directly that comma codes satisfy the Kraft inequality.
- 4) For a code $f : \Sigma_1 \rightarrow \Sigma_2^*$ and a code $f' : \Sigma_1' \rightarrow \Sigma_2'^*$ the product code is $g : \Sigma_1 \times \Sigma_1' \rightarrow (\Sigma_2 \cup \Sigma_2')^*$ given by $g(x, y) = f(x)f'(y)$. Show that the product of two prefix-free codes is prefix-free, but that the product of a decipherable code and a prefix-free code need not even be decipherable.
- 5) Jensen's inequality states that if $f : \mathbb{R} \rightarrow \mathbb{R}$ is a convex function and p_1, \dots, p_n is a probability distribution (*i.e.* $0 \leq p_i \leq 1$ and $\sum p_i = 1$) then $f(\sum p_i x_i) \leq \sum p_i f(x_i)$ for any $x_1, \dots, x_n \in \mathbb{R}$. Deduce Gibbs' inequality from Jensen's inequality applied to the convex function $f(x) = -\log x$.
- 6) Show that $H(p_1, p_2, p_3) \leq H(p_1) + (1 - p_1)$ and determine when equality occurs.
- 7) Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes for messages μ_1, \dots, μ_5 emitted (i) with equal probabilities, or (ii) with probabilities $0.3, 0.3, 0.2, 0.15, 0.05$. Compare the expected word lengths in each case.
- 8) Messages μ_1, \dots, μ_5 are emitted with probabilities $0.4, 0.2, 0.2, 0.1, 0.1$. Determine whether there are optimal binary codings with (i) all but one codeword of the same length, or (ii) each codeword a different length.
- 9) Show that if an optimal binary code has word lengths s_1, \dots, s_m then

$$m \log m \leq s_1 + \dots + s_m \leq (m^2 + m - 2)/2.$$

- 10) Suppose that a gastric infection is known to originate in exactly one of m restaurants, the probability it originates in the j^{th} being p_j . A health inspector has samples from all of the m restaurants and by testing the pooled samples from a set A of them can determine with certainty whether the infection originates in A or its complement. Let $N(p_1, \dots, p_m)$ denote the minimum expected number of such tests needed to locate the infection. Show that $H(p_1, \dots, p_m) \leq N(p_1, \dots, p_m) \leq H(p_1, \dots, p_m) + 1$, and determine when the lower bound is attained.
- 11) (For those who did IB Optimisation.) Use a Lagrange multiplier to solve the following constrained optimisation problem: Given $p_i > 0$ with $\sum_{i=1}^m p_i = 1$ find real numbers s_1, \dots, s_m to minimise $\sum_{i=1}^m p_i s_i$ subject to $\sum_{i=1}^m a^{-s_i} \leq 1$.

12) Extend the definition of entropy to a random variable taking values in the non-negative integers. Compute the expected value $E(X)$ and entropy $H(X)$ of a random variable X with $P(X = k) = p(1-p)^k$. Show that among non-negative integer valued random variables with the same expected value, X achieves the maximum possible entropy.

13) In a horse race with m horses the probability that the i^{th} horse wins is p_i . The odds offered on each horse are a_i –for–1, *i.e.* a bet of x pounds on the i^{th} horse will yield $a_i x$ pounds if the horse wins, and nothing otherwise. A gambler bets a proportion b_i of his wealth on horse i , with $\sum_{i=1}^m b_i = 1$. He seeks to maximise $W = \sum_{i=1}^m p_i \log(a_i b_i)$. Suggest a motivation for this choice. Solve to find the b_i that maximise W . Show that in the case of even odds this maximum and the entropy $H(p_1, \dots, p_m)$ sum to a constant.

14) A source emits messages μ_1, \dots, μ_m with non-zero probabilities p_1, \dots, p_m . Let S be the codeword length random variable for a decipherable code $f : \Sigma_1 \rightarrow \Sigma_2^*$ where $\Sigma_1 = \{\mu_1, \dots, \mu_m\}$ and $|\Sigma_2| = a$. Show that the minimum possible value of $E(a^S)$ satisfies

$$\left(\sum_{i=1}^m \sqrt{p_i} \right)^2 \leq E(a^S) < a \left(\sum_{i=1}^m \sqrt{p_i} \right)^2.$$

(Hint: The Cauchy-Schwarz inequality.)

15) (i) In lectures we only described Huffman coding in the binary case, *i.e.* $a = 2$. In general we add extra messages of probability zero so that the number of messages m satisfies $m \equiv 1 \pmod{a-1}$. Then at each stage we group together the a smallest probabilities. Carry this out for a ternary coding of a source with probabilities 0.2, 0.2, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05.

(ii) Show that if a ternary decipherable code of size m meets the lower bound in the noiseless coding theorem then m is odd.