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Coding and Cryptography - Example Sheet 1 of 4 T.A. Fisher

1) In a Binary Symmetric Channel (BSC) we usually take the probability p of error to
be less than 1/2. Why do we not consider 1 ≥ p ≥ 1/2? What if p = 1/2?

2) Show that if we connect two Discrete Memoryless Channels (DMC’s) in series or
in parallel then the result is again a DMC. How are the channel matrices related?
Illustrate in the case of two BSC’s with error probabilities p and q.

3) (i) Give an example of a decipherable code which is not prefix-free. (Hint: What
happens if you reverse all the codewords in a prefix-free code?)
(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.
(iii) Check directly that comma codes satisfy the Kraft inequality.

4) For a code f : Σ1 → Σ∗
2 and a code f ′ : Σ′

1 → Σ′
2
∗ the product code is g : Σ1 × Σ′

1 →
(Σ2 ∪ Σ′

2)
∗ given by g(x, y) = f(x)f ′(y). Show that the product of two prefix-free

codes is prefix-free, but that the product of a decipherable code and a prefix-free code
need not even be decipherable.

5) Jensen’s inequality states that if f : R → R is a convex function and p1, . . . , pn is a
probability distribution (i.e. 0 ≤ pi ≤ 1 and

∑
pi = 1) then f(

∑
pixi) ≤

∑
pif(xi)

for any x1, . . . , xn ∈ R. Deduce Gibbs’ inequality from Jensen’s inequality applied to
the convex function f(x) = − log x.

6) Show that H(p1, p2, p3) ≤ H(p1) + (1− p1) and determine when equality occurs.

7) Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes
for messages µ1, . . . , µ5 emitted (i) with equal probabilities, or (ii) with probabilities
0.3, 0.3, 0.2, 0.15, 0.05. Compare the expected word lengths in each case.

8) Messages µ1, . . . , µ5 are emitted with probabilities 0.4, 0.2, 0.2, 0.1, 0.1. Determine
whether there are optimal binary codings with (i) all but one codeword of the same
length, or (ii) each codeword a different length.

9) Show that if an optimal binary code has word lengths s1, . . . , sm then

m log m ≤ s1 + . . . + sm ≤ (m2 + m− 2)/2.

10) Suppose that a gastric infection is known to originate in exactly one of m restaurants,
the probability it originates in the jth being pj . A health inspector has samples from
all of the m restaurants and by testing the pooled samples from a set A of them can
determine with certainty whether the infection originates in A or its complement. Let
N(p1, . . . , pm) denote the minimum expected number of such tests needed to locate
the infection. Show that H(p1, . . . , pm) ≤ N(p1, . . . , pm) ≤ H(p1, . . . , pm) + 1, and
determine when the lower bound is attained.

11) (For those who did IB Optimisation.) Use a Lagrange multiplier to solve the following
constrained optimisation problem: Given pi > 0 with

∑m
i=1 pi = 1 find real numbers

s1, . . . , sm to minimise
∑m

i=1 pisi subject to
∑m

i=1 a−si ≤ 1.
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12) Extend the definition of entropy to a random variable taking values in the non-negative
integers. Compute the expected value E(X) and entropy H(X) of a random variable
X with P (X = k) = p(1−p)k. Show that among non-negative integer valued random
variables with the same expected value, X achieves the maximum possible entropy.

13) In a horse race with m horses the probability that the ith horse wins is pi. The odds
offered on each horse are ai–for–1, i.e. a bet of x pounds on the ith horse will yield aix
pounds if the horse wins, and nothing otherwise. A gambler bets a proportion bi of
his wealth on horse i, with

∑m
i=1 bi = 1. He seeks to maximise W =

∑m
i=1 pi log(aibi).

Suggest a motivation for this choice. Solve to find the bi that maximise W . Show
that in the case of even odds this maximum and the entropy H(p1, . . . , pm) sum to a
constant.

14) A source emits messages µ1, . . . , µm with non-zero probabilities p1, . . . , pm. Let S be
the codeword length random variable for a decipherable code f : Σ1 → Σ∗

2 where
Σ1 = {µ1, . . . , µm} and |Σ2| = a. Show that the minimum possible value of E(aS)
satisfies ( m∑

i=1

√
pi

)2

≤ E(aS) < a

( m∑
i=1

√
pi

)2

.

(Hint: The Cauchy-Schwarz inequality.)

15) (i) In lectures we only described Huffman coding in the binary case, i.e. a = 2. In
general we add extra messages of probability zero so that the number of messages
m satisfies m ≡ 1 (mod a − 1). Then at each stage we group together the a small-
est probabilities. Carry this out for a ternary coding of a source with probabilities
0.2, 0.2, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05.
(ii) Show that if a ternary decipherable code of size m meets the lower bound in the
noiseless coding theorem then m is odd.
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