
MATHEMATICAL TRIPOS PART II (2004–05)

Coding and Cryptography - Example Sheet 3 of 4 T.A. Fisher

41) An (n, k)-linear code is used to transmit through a binary erasure channel. Find a
necessary and sufficient condition on the parity check matrix so that t errors can be
corrected. Relate t to k in a useful manner.

42) (i) Show that if C is linear, then so are its parity extension C+, puncturing C− and
shortening C ′, provided the symbol chosen to shorten by is 0. Give an example to
show that C ′ may not be linear if we shorten by 1.
(ii) Give an example where shortening reduces the information rate and an example
where shortening increases the information rate.
(iii) Show that shortening cannot decrease the minimum distance but give examples
to show that the minimum distance can stay the same or increase.

43) Find generator and parity check matrices for the Hamming (7, 4)-code, putting each
in the form (I|B) for I an identity matrix of suitable size. Repeat for the parity
extension of this code.

44) If C1 and C2 are of appropriate type with generator matrices G1 and G2 write down
a generator matrix for C1|C2.

45) The Mariner mission to Mars used the RM(5, 1) code. What was its information rate?
What proportion of errors could it correct in a single code word?

46) Give a recursive definition of the Reed-Muller codes, using the bar product construc-
tion. Use this to compute the rank of RM(d, r). Show that all but two codewords in
RM(d, 1) have the same weight.

47) Show that the RM(d, d−2) code is the parity extension code of the Hamming (n, n−d)
code with n = 2d − 1. (This is useful because we often want codes of length 2d.)

48) Consider the collection K of polynomials a0 +a1α+a2α
2 +a3α

3 with aj ∈ F2 manip-
ulated subject to the usual rules of polynomial arithmetic and the further condition
1 + α + α4 = 0. Show by direct calculation that K× = K \ {0} is a cyclic group under
multiplication and deduce that K is a finite field. [Of course, this follows directly from
general theory but direct calculation is not uninstructive.]

49) Factor the polynomials X3 − 1 and X5 − 1 into irreducibles in F2[X]. Hence find all
cyclic codes of length 3 or 5 and relate them to codes you have met before.

50) Show directly that the dual code C⊥ of a cyclic code C is cyclic. Explain how the
generator polynomials of C and C⊥ are related.

51) Show that there are three cyclic codes of length 7 corresponding to irreducible poly-
nomials of which two are versions of Hamming’s original code. What are the other
cyclic codes of length 7?

52) Let K ⊃ F2 be a finite field.
(i) Show that if α ∈ K and g(X) ∈ F2[X] then g(α) = 0 implies g(α2) = 0.
(ii) Show that if β ∈ K is a primitive 23rd root of unity then the cyclic code of length
23 defined by β has weight at least 5.
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(iii) It turns out that the code in (ii) is a perfect code. Assuming this, what is its
weight?

53) Let α ∈ F16 be a root of X4 +X +1. Let C be the BCH code of length 15 and design
distance 5, with defining set the first few powers of α.
(i) Find the generator polynomial of C.
(ii) If possible, determine the error positions of the following received words

(a) r(X) = 1 + X6 + X7 + X8

(b) r(X) = 1 + X + X4 + X5 + X6 + X9

(c) r(X) = 1 + X + X7.
[Your answer to Question 48 may help with the computations.]

54) A binary linear feedback shift register was used to generate the following stream

110001110001 . . .

Recover the feedback polynomial by the Berlekamp-Massey method. [The LFSR has
length 4 but you should work through the trials for length r for 1 ≤ r ≤ 4.]

Further Problems
Note: the examples above are minimal to cover the course; you are encouraged to do those below also.

55) Show that if 2k
∑d−2

i=0

(
n−1

i

)
< 2n then A(n, d) ≥ 2k. Compare with the GSV bound

in the case n = 10 and d = 3. [Hint: Construct a parity check matrix for a linear code
by choosing one column at a time.]

56) Show that RM(d, r) has dual code RM(d, d− r − 1).

57) We identify Fn
2 with indicator functions on X = Fd

2 where n = 2d. Let A ⊂ X be a
vector subspace of dimension at least d−r. Determine whether the indicator function
of A is a codeword in RM(d, r).

58) Let ρ > 0. Let C1, C2, . . . be a sequence of Reed-Muller codes, each with information
rate at least ρ. Show that if they are used to transmit through a BSC with error
probability p < 1/2, and we use minimum distance decoding, then ê(Cn) 6→ 0 as
n →∞. (Recall that ê(C) denotes the maximum error probability of a code C.)

59) Show that the Hamming (n, n−d)-code is the cyclic code of length n = 2d−1 defined
by a primitive nth root of unity.

60) Consider the linear recurrence

xn = a0xn−d + a1xn−d+1 . . . + ad−1xn−1 (∗)

with aj ∈ F2 and a0 6= 0.
Show that if the auxiliary polynomial P (X) factors over K ⊃ F2, say as P (X) =∏r

i=1(X − αi)mi for α1, . . . , αr distinct, then (∗) has general solution

xn =
r∑

i=1

mi−1∑
j=0

bi,j

(
n

j

)
αn

i

for some bi,j ∈ K. If x0, x1, . . . , xd−1 ∈ F2, show that xn ∈ F2 for all n.
[Hint : First show that the functions fj : Z → F2 given by fj(n) =

(
n
j

)
are linearly

independent in the sense that
∑m

j=0 ajfj(n) = 0 for all n implies aj = 0 for 1 ≤ j ≤ m.]
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