
MATHEMATICAL TRIPOS PART II (2004–05)

Coding and Cryptography - Example Sheet 1 of 4 T.A. Fisher

1) In a Binary Symmetric Channel we usually take the probability p of error to be less
than 1/2. Why do we not consider 1 ≥ p ≥ 1/2? What if p = 1/2?

2) Show that if we connect two Discrete Memoryless Channels (DMC’s) in series or in
parallel then the result is again a DMC. How are the channel matrices related?

3) (i) Give an example of a decipherable code which is not prefix-free. (Hint: What
happens if you reverse all the codewords in a prefix-free code?)
(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.
(iii) Check directly that comma codes satisfy the Kraft inequality.

4) For a code f : Σ1 → Σ∗
2 and a code f ′ : Σ′

1 → Σ′
2
∗ the product code is g : Σ1 × Σ′

1 →
(Σ2 ∪ Σ′

2)
∗ given by g(x, y) = f(x)f ′(y). Show that the product of two prefix-free

codes is prefix-free, but that the product of a decipherable code and a prefix-free code
need not even be decipherable.

5) Sketch the graph of x 7→ x log+ x on [0,∞) and prove it is continuous.

6) Jensen’s inequality states that if f : R → R is a convex function and p1, . . . , pn is a
probability distribution (i.e. 0 ≤ pi ≤ 1 and

∑
pi = 1) then f(

∑
pixi) ≤

∑
pif(xi)

for any x1, . . . , xn ∈ R. Deduce Gibbs’ inequality from Jensen’s inequality applied to
the convex function f(x) = − log x.

7) Show that H(p1, p2, p3) ≤ H(p1) + (1− p1) and determine when equality occurs.

8) Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes
for messages µ1, . . . , µ5 emitted (i) with equal probabilities, or (ii) with probabilities
0.3, 0.3, 0.2, 0.15, 0.05. Compare the expected word lengths in each case.

9) Messages µ1, . . . , µ5 are emitted with probabilities 0.4, 0.2, 0.2, 0.1, 0.1. Determine
whether there are optimal binary codings with (i) all but one codeword of the same
length, or (ii) each codeword a different length.

10) A Bernoulli source emits letters A, B and C with probabilities 1/2, 1/3 and 1/6.
Compare the expected word lengths of an optimal binary coding in the cases (i) we
code letter by letter, i.e. the input alphabet is {A,B,C}, and (ii) we code two letters
at a time, i.e. the input alphabet is {AA,AB, . . . , CC}.

11) A source emits one of 7 letters with probabilities 0.22, 0.2, 0.18, 0.15, 0.1, 0.08, 0.07.
Find a ternary Huffman coding, always grouping the 3 lowest probabilities together.
What happens if you apply this to an 8-letter source?

12) Suppose that a gastric infection is known to originate in exactly one of m restaurants,
the probability it originates in the jth being pj . A health inspector has samples from
all of the m restaurants and by testing the pooled samples from a set A of them can
determine with certainty whether the infection originates in A or its complement. Let
N(p1, . . . , pm) denote the maximum expected number of such tests needed to locate
the infection. Show that H(p1, . . . , pm) ≤ N(p1, . . . , pm) ≤ H(p1, . . . , pm) + 1, and
determine when the lower bound is attained.
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13) Show that if a ternary decipherable code of size m meets the lower bound in Shannon’s
noiseless coding theorem then m is odd.

14) In a horse race with m horses the probability that the ith horse wins is pi. The odds
offered on each horse are ai–for–1, i.e. a bet of x pounds on the ith horse will yield aix
pounds if the horse wins, and nothing otherwise. A gambler bets a proportion bi of
his wealth on horse i, with

∑m
i=1 bi = 1. He seeks to maximise W =

∑m
i=1 pi log(aibi).

Why? Find the choice of the bi that maximises W . Show that in the case of even
odds this maximum and the entropy H(p1, . . . , pm) sum to a constant.

Further Problems
Note: the examples above are minimal to cover the course; you are encouraged to do those below also.

15) (For those who did IB Optimisation.) Use a Lagrange multiplier to solve the following
constrained optimisation problem: Given pi > 0 with

∑m
i=1 pi = 1 find real numbers

s1, . . . , sm to minimise
∑m

i=1 pisi subject to
∑m

i=1 a−si ≤ 1.

16) Show that if an optimal binary code has word lengths s1, . . . , sm then

m log m ≤ s1 + . . . + sm ≤ (m2 + m− 2)/2.

17) In lectures we only described Huffman coding in the binary case, i.e. a = 2. In general
we add extra messages of probability zero so that the number of messages m satisfies
m ≡ 1 (mod a− 1). We then follow the method of Question 11. Carry this out for a
ternary coding of a source with distribution 0.2, 0.2, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05.

18) A source emits messages µ1, . . . , µm with non-zero probabilities p1, . . . , pm. Let S be
the codeword length random variable for a decipherable code f : Σ1 → Σ∗

2 where
Σ1 = {µ1, . . . , µm} and |Σ2| = a. Show that the minimum possible value of E(aS)
satisfies ( m∑

i=1

√
pi

)2

≤ E(aS) < a

( m∑
i=1

√
pi

)2

.

(Hint: The Cauchy-Schwarz inequality.)

19) Extend the definition of entropy to a random variable taking values in the non-negative
integers. Compute the expected value E(X) and entropy H(X) of a random variable
X with P (X = k) = p(1−p)k. Show that among non-negative integer valued random
variables with the same expected value, X achieves the maximum possible entropy.

20) You are given m apparently identical coins, one of which may be a forgery. Forged
coins are either too light or too heavy. You are also given a balance, on which you
may place any of the coins you like. The coins placed in either pan may be together
heavier or lighter than those in the other pan or the pans may balance.

You are allowed at most 3 uses of the balance. Show that if m > 13 then you
cannot be sure of detecting the forgery and its nature.
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