

PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2025-26
EXAMPLE SHEET 4

(1) Let A be a recursive set, and define the set

$$B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in \mathbb{K}\}.$$

(a) Is B recursive? If not, which of B and $\mathbb{N} \setminus B$ are r.e. (if any), and why?

(b) By replacing A in the construction of B with a suitably chosen set, construct a set $C \subseteq \mathbb{N}$ such that neither C nor $\mathbb{N} \setminus C$ are r.e.

(2) Give examples, with proofs, of infinite collections of recursive sets whose union:

- (a) Is recursive.
- (b) Is r.e. but not recursive.
- (c) Is not r.e., and its complement is not r.e. either.

(3) Give an example of an infinite collection of recursive sets $\{W_n\}_{n \in I}$, whose index set I is r.e., for which

$$\bigcap_{n \in I} W_n$$

is not r.e.

(4) Let Σ be a finite alphabet, and L be a regular language over Σ .

- (a) Fix an ordering of Σ , and use this to describe a bijection b from Σ^* to \mathbb{N} .
- (b) Using this ordering of Σ^* , show that $\{n \in \mathbb{N} \mid b^{-1}(n) \in L\}$ is a recursive set.

(5) Show that if $g : \mathbb{N}^2 \rightarrow \mathbb{N}$ is total recursive, then there is some $e \in \mathbb{N}$ such that

$$f_{e,1}(y) = g(e, y) \quad \forall y \in \mathbb{N}.$$

Use this to show there exists some $m \in \mathbb{N}$ such that W_m has exactly m elements.

(6) Prove that the set $\{n \in \mathbb{N} \mid |W_n| > 5\}$ is r.e., but not recursive.

(7) Show that there is an $n \in \mathbb{N}$ such that $W_n = \{n\}$.

(8) Assume that we have two subsets X, Y of \mathbb{N} which are neither \mathbb{N} nor \emptyset . Show that the Turing join $X \oplus Y$ is the least upper bound of X and Y with respect to the relation \leq_m , namely if we have $Z \subseteq \mathbb{N}$ with both $X, Y \leq_m Z$, then $X \oplus Y \leq_m Z$.

(9) Show that **Emp** $\leq_m \mathbb{N} \setminus \mathbb{K}$ and $\mathbb{N} \setminus \mathbb{K} \leq_m \mathbf{Emp}$. [Hint. Recall that the set $\mathbb{N} \setminus \mathbb{K}$ is Π_1 -complete. Why?]

(10) Prove that \mathbb{K} is not an index set.

(11) Prove that **Inf** and **Tot** are neither Σ_1 nor Π_1 .

(12) Given an explicit code m for a register machine P_m , consider the set

$$T_m := \{n \in \mathbb{N} \mid W_m \subseteq W_n\}.$$

Construct two explicit codes m, m' such that T_m is recursive, and $T_{m'}$ is not r.e.

(13) Let $g : \mathbb{N}^k \rightarrow \mathbb{N}$ be a total computable function. Consider $\mathbf{Eq}(g) := \{n : f_{n,k} = g\}$ and show that **Tot** $\leq_m \mathbf{Eq}(g)$.