PART IT AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2025-26
EXAMPLE SHEET 3

(1) Let G be the CFG given by
S— ABS | AB, A—aA|a, B—0bA

For each of the words aabaab, aaaaba, aabbaa, abaaba, determine whether or not they
lie in £(G). If so, give a derivation and a parse tree; if not, explain why not.

(2) (a) Show that the following two languages are both CFLs:
Ly :={a"b"c" | n,i > 1}, and Lo := {a'd"c" | n,i > 1}.

(b) Show that the language L := {a"b"c" | n > 1} is not a CFL.

(c) Show that L; N Ly = L, and hence that the intersection of two CFLs is not
necessarily a CFL.

(d) Conclude that the complement of a CFL need not be a CFL.

(3) For each of the following languages, either show that it is a CFL by constructing a CFG
for it, or use the pumping lemma to show that it is not a CFL:

) {a"0™ | n # m}

) {a™b"c™d"” | m,n > 1}

) {a"b™cFd | 2n = 3m and 5k = 71}
) {a"b™cFd! | 2n = 3k and 5m = 7l}
) {a"b™cFd! | 2n = 3k or bm = T}

) {ww | w € {a,b}"}
) {061\ fww | w e {a,b}"}

(4) Give an example of a register machine, via a program diagram and a sequence of
instructions, for computing each of the following functions.

(5) Draw a program diagram for each of the following sequences of instructions, and identify
the upper register index of each program. Also, for the specified n, write down the
function on n variables that the program computes.

(a) (1,+,2),(1,4,0). n=1.

Jack Button, jb128@cam.ac.uk, November 10, 2025.
1

A&FL EXAMPLE SHEET 3

(b) (1,-,2,5),(2,4+,3),(3,+,4),(4,+,1),(3,—-,6,0),(2,—,7,8),(1,+,6), (4, —,9,11),
(5,+,10), (2, +,8), (5, —,12,5), (4,4, 11). n = 1.
(©) (2,+,2),(4,+,3),(3,—,5,7), (1,—,8,6), (5, +,6), (8, +,3), (3,+,0), (1,+,8).

(6) Build up each of the following total recursive functions from the basic functions via
composition, recursion and minimisation.

(a) The “predecessor function” w(n) =n — 1 for n > 1 and 7(0) = 0.
(b) f(a,b,c, m)—ax +bx+c

f
(c) f(n) =
(7) Show that, for each k > 1, each of the following functions is primitive recursive

(a) remg(n) = n mod k

(b) floory(n) = [%]

idey(n) = { § fn=0 modk
(c) divideg(n) = { 0 otherwise

n 3 . m
- if n=0 mod k
(d) powery(n,m) { 0 otherwise
For the remainder of this sheet, in order to prove that there is an algorithm or that a
function is partial computable, you do not need to define a register machine or build
up the function from basic functions. It is sufficient to have a mathematical argument
in the usual style of a mathematical proof.

(8) Show there is an algorithm that, on input of a code n for a register machine program
P, halts iff P, halts on some input in some number of variables.

(9) Let E be an infinite subset of N. Show that E is recursive iff there is a strictly increasing
total recursive function f : N — N whose image is precisely E.

(10) (a) Show that the set of prime numbers is recursive.

(b) Show there is an algorithm that, on input of an integer n > 1, outputs the largest
prime p which divides n.

(c) How do you thus respond to a critic who says “given an integer n which is the
product of two primes, mathematicians claim that the difficulty of finding those
primes can be used as a basis for secure encryption, but a straightforward register
machine can find these primes”?

(11) Let f : N — N be a total bijective function. Show that f is total recursive iff f~! is
total recursive.

(12) Show that there is an r.e. set E such that for every n € E, fy, 1 is primitive recursive,
and moreover every primitive recursive function on 1 variable occurs as f,1 for some

n € FE.

