

PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2025-26
EXAMPLE SHEET 2

(1) For each of the following languages L over the alphabet $\{0, 1\}$, determine whether or not they are regular. Justify your answers.

(i) $\{ww ; \varepsilon \neq w \in \{0, 1\}^*\}$; (v) $\{0^n 1^m ; n \neq m\}$;
 (ii) $\{w1w ; w \in 0^*\}$; (vi) $\{0^n 1^m ; n \geq m \text{ and } m \leq 1000\}$;
 (iii) $\{v1w ; v, w \in 0^*\}$; (vii) $\{0^n 1^m ; n \geq m \text{ and } m \geq 1000\}$;
 (iv) $\{0^n 1^m ; n > m\}$; (viii) $\{0^p ; p \text{ is a prime}\}$.

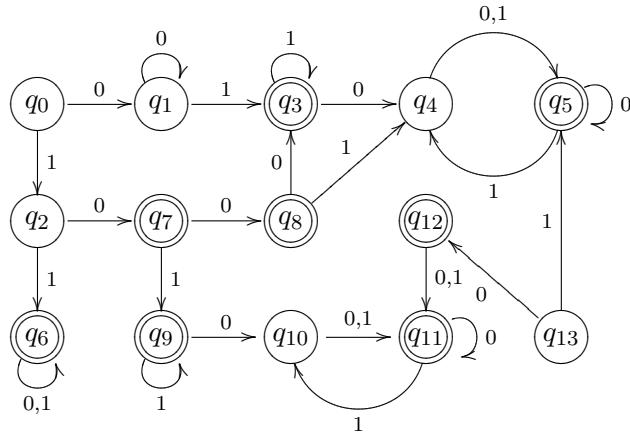
(2) Let $L \subseteq \{0^n 1^n ; n \geq 1\}$. Show that L is regular if and only if L is finite.

(3) Let $S = \{2^n \mid n \in \mathbb{N}\}$ be the subset of \mathbb{N} consisting of the powers of 2. Show that over the alphabet $\{0, 1\}$, the language consisting of the elements of S written in base 2 (with no preceding zeros) is a regular language.
 However, show that over the alphabet $\{0, 1, \dots, 9\}$ the language consisting of the elements of S written in base 10 (with no preceding zeros) is not a regular language.

(4) (*For those that like Groups*) Draw a nice picture of a Cayley graph of a non-abelian finite group, realised as some DFA D . What is the minimisation of D ?

(5) If $D_1 = (Q, \Sigma, \delta, q_0, F)$ is a minimal DFA, and $D_2 = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA for $\Sigma^* \setminus \mathcal{L}(D_1)$, then is D_2 necessarily a minimal DFA? Prove your answer.

(6) Minimise the following automaton using the construction given in the lectures.



(7) Let $\Sigma = \{0, 1, 2\}$. Show each of the following claims by supplying an appropriate grammar that produces the given language. Explain why your grammar generates this language.

- (i) The language consisting of words of the form $(012)^n$ (for $n > 0$) is type 3.
- (ii) The language consisting of words of the form $0^n 1 2^n$ (for $n \in \mathbb{N}$) is type 2.
- (iii) The language consisting of words of the form $0^n 1^n 2^n$ (for $n > 0$) is type 1.

Are any of them of even higher type than listed?

(8) Show that if L is any type 3 language then L is the accepted language of some NFA. Conversely show that if L is the accepted language of a DFA where the start state is not an accept state then L is of type 3. Use this to show that any regular language is context free.

(9) (Another proof that all regular languages are context free.) Let L, M be CFL's, and let a be any symbol. Show that the following are all CFL's: $\emptyset, \{\epsilon\}, \{a\}, L \cup M, LM, L^*,$ and L^R (the reverse of L).

Conclude that every regular language is a CFL.

(10) For $e, w \in \Sigma^*$, we say that e is an *excerpt* of w if it is the result of removing finitely many subwords from w , i.e.,

$$w = x_1 y_1 x_2 y_2 \dots x_n y_n x_{n+1} \text{ and } e = y_1 \dots y_n$$

for some $x_1, \dots, x_{n+1}, y_1, \dots, y_n \in \Sigma^*$; we say that it is a *proper excerpt* if $e \neq w$.

- (i) Suppose that $L := \mathcal{L}(D)$ for a deterministic automaton D with $|Q| = n$ and that $w = xvy \in L$ for $x, v, y \in \Sigma^*$ with $|v| \geq n$. Prove that there is a proper excerpt e of v such that $xey \in L$.
- (ii) Show that the following language over $\Sigma = \{0, 1, 2\}$ is context-free, not regular, but satisfies the regular pumping lemma with pumping number $n = 2$:

$$L = \{w20^n1^n ; w \in \Sigma^*, n > 0\} \cup \{0, 1\}^*.$$

(11) Give a CFG which generates the set of regular expressions over the alphabet $\{0, 1\}$. Take as the set of terminals $\Sigma = \{\mathbf{0}, \mathbf{1}, (,), +, ^*, \emptyset, \epsilon\}$. Show that this language is not a regular language.

(12) Let $G = (N, \Sigma, P, S)$ be a CFG in CNF. Suppose we form a new CFG G' from G by adding, for each production of the form $B \rightarrow a$ in P (where $a \in \Sigma$), the production $B \rightarrow \epsilon$.

Describe the new language $\mathcal{L}(G')$ in terms of the original language $\mathcal{L}(G)$. Is this always true if G is not in CNF?

(13) Convert the following CFG to CNF:

$$S \rightarrow aSbb \mid T, \quad T \rightarrow bTaa \mid S \mid \epsilon$$

(14) Give a CFG for each of the following CFL's, and then transform each such CFG into CNF:

- (a) $\{a^n b^{2n} c^k \mid k, n \geq 1\}$
- (b) $\{a^n b^k a^n \mid k, n \geq 1\}$
- (c) $\{a^k b^m c^n \mid k, m, n \geq 1, 2k \geq n\}$