

PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2025-26
EXAMPLE SHEET 1

(1) Construct DFAs, via transition diagrams, which accept the following languages:

- (a) $\{w \in \{0,1\}^* \mid |w| > 2\}$.
- (b) $\{w \in \{0,1\}^* \mid w \text{ is an alternating sequence of 1's and 0's}\}$.
- (c) $\{w \in \{0,1\}^* \mid w \text{ is a multiple of 3 when interpreted in binary}\}$.
 (Leading zeros are permitted and take ϵ to represent the number zero.)
- (d) $\{w \in \{a,\dots,z\}^* \mid w \text{ contains } ababa \text{ as a substring}\}$.

(2) Construct NFAs, either via transition diagrams or transition tables, which accept precisely the following languages:

- (a) $\{w \in \{a,\dots,z\}^* \mid w \text{ contains } ababa \text{ as a substring}\}$.
- (b) $\{w \in \{a,\dots,z\}^* \mid w \text{ contains } dpmmms \text{ and/or } damtp \text{ as a substring}\}$.
- (c) $\{w \in \{a,\dots,z\}^* \mid w \in \{\text{what, where, when}\}\}$.

Use the subset construction to convert (2a) to a DFA.

- (3) Construct an ϵ -NFA which accepts the *union* of the three languages from question (2), and has only *one* accept state.
- (4) Given alphabets Σ, Π and a homomorphism $h : \Sigma^* \rightarrow \Pi^*$, suppose that $B \subseteq \Pi^*$ is a regular language. Show that its preimage $h^{-1}(B) \subseteq \Sigma^*$ is also regular.
 If $A \subseteq \Sigma^*$ and $h(A)$ is regular then is A ?

(5) Work over the alphabet $\Sigma = \{0,1\}$ and for $n \geq 1$ consider

$$L_n := \{w ; \text{there are words } x, y \text{ such that } |y| = n-1 \text{ and } w = x1y\},$$

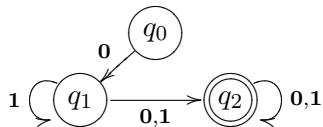
i.e., the set of words that have a 1 in the n th position counted from the end of the word. Show that:

- (i) There is a nondeterministic automaton N with $n+1$ states such that $\mathcal{L}(N) = L_n$
- (ii) if D is a deterministic automaton with fewer than 2^n states, then $\mathcal{L}(D) \neq L_n$.

(6) A subset U of \mathbb{N} is said to be **ultimately periodic** if there exists $N \in \mathbb{N}$ and $p > 0$ such that for all $m \geq N$ we have $m \in U$ if and only if $m + p \in U$.

Let Σ be the one letter alphabet consisting of your favourite symbol. Regarding an element of Σ^* as a natural number n where n is its word length (this is sometimes called unary notation for the integers), show that a language $A \subseteq \Sigma^*$ is regular if and only if it is ultimately periodic.

(7) Consider the following nondeterministic automaton over the alphabet $0, 1$:



Convert it to a deterministic automaton with $2^3 = 8$ states using the power set construction. Can you simplify the deterministic automaton without changing the accepted language?

(8) Let $D = (\Sigma, Q, \delta, q_0, F)$ be a DFA and define $R := (Q \setminus F) \cup \{\alpha\}$ for some new state α . Let the NFA N be $(\Sigma, R, \Delta, \alpha, \{q_0\})$ where Δ is given by

$$\begin{aligned} q' \in \Delta(q, a) &\text{ if and only if } \delta(q', a) = q, \\ q' \in \Delta(\alpha, a) &\text{ if and only if } \delta(q', a) \in F, \\ \alpha \in \Delta(q, a) &\text{ if and only if } \delta(p, a) = q \text{ for some } p \in F, \text{ and} \\ \alpha \in \Delta(\alpha, a) &\text{ if and only if } \delta(p, a) \in F \text{ for some } p \in F \end{aligned}$$

(where $a \in \Sigma$ and $q, q' \in Q \setminus F$). Describe the relationship between $\mathcal{L}(D)$ and $\mathcal{L}(N)$ and prove your claim.

(9) Construct ϵ -NFA's and regular expressions for the following regular languages:

- (a) All words $w \in \{0, 1\}^*$ consisting of either the string 01 repeated some number of times (possibly none), or the string 010 repeated some number of times (possibly none).
- (b) All words $w \in \{a, b, c\}^*$ consisting of some number of a 's (possibly none), followed by some number of b 's (at least one), followed by some number of c 's (possibly none).
- (c) All words $w \in \{0, 1\}^*$ which contain a 1 somewhere in the last 4 positions. If $|w| < 4$, then w must contain a 1 somewhere.
- (d) All words $w \in \{a, \dots, z, 0, \dots, 9, ., :\}^*$ of the form $\text{name}:\alpha.\text{address}:\beta$. where $\alpha, \beta \in \{a, \dots, z, 0, \dots, 9\}^*$. Where might you use such a machine/expression, and why?

(10) Convert each of the following regular expressions to ϵ -NFA's:

- (a) $(0 + 1)(01)$
- (b) $(a + bb)^*(ba^* + \epsilon)$
- (c) $((aa^*)^*b)^* + c$

(11) Prove that $\{w \in \{0, 1\}^* \mid w \text{ contains no more than 5 consecutive 0's}\}$ is regular.

(12) Let R, S, T be regular expressions. For each of the following statements, either prove that it is true, or find a specific counterexample.

- (a) $\mathcal{L}(R(S + T)) = \mathcal{L}(RS) + \mathcal{L}(RT)$
- (b) $\mathcal{L}((R^*)^*) = \mathcal{L}(R^*)$
- (c) $\mathcal{L}((RS)^*) = \mathcal{L}(R^*S^*)$
- (d) $\mathcal{L}((R + S)^*) = \mathcal{L}(R^*) + \mathcal{L}(S^*)$
- (e) $\mathcal{L}((R^*S^*)^*) = \mathcal{L}((R + S)^*)$