

Example Sheet #4

- (42) In Example (31), you gave the concrete definition of a register machine M. Write down its code in \mathbb{B} and calculate $\#(\operatorname{code}(M))$.
- (43) Let φ be a total computable function. A word w is called a fixed point of φ if $f_{\varphi(w),1} = f_{w,1}$. The Recursion Theorem or Fixed Point Theorem states that every total computable function has a fixed point.
 - (a) Argue that there is a total computable function h such that

$$f_{h(u),1}(v) := \begin{cases} f_{f_{u,1}(u)}(v) & \text{if } u \in \mathbf{K} \text{ and} \\ \uparrow & \text{otherwise.} \end{cases}$$

- (b) Prove the Recursion Theorem. [Hint. Let e be such that $f_{e,1} = \varphi \circ h$ and w := h(e), where h is as in (a).]
- (44) Show that there is a w such that $W_w = \{w\}$ and a w such that $|W_w| = |w|$.
- (45) Let $f: \mathbb{B}^2 \to \mathbb{B}$ be a partial computable function. Show that the following sets are computably enumerable:
 - (a) $\{w : \text{there are three distinct words } v \text{ such that } f(w, v) \downarrow \};$
 - (b) $\{w : \text{there is a word } v \text{ of even length such that } f(w, v) \downarrow \};$
 - (c) $\{w : \text{there is a word } v \text{ such that } f(w, v) = w * v\}.$
- (46) Let $f: \mathbb{B} \to \mathbb{B}$ be a total bijective function. Show that f is computable if and only if f^{-1} is computable.
- (47) Let $L \subseteq \mathbb{B}$ be non-empty. Show that L is computably enumerable if and only if there is a total computable function f such that $L = \operatorname{ran}(f)$.
- (48) Suppose X is computably enumerable. Show that $\bigcup_{v \in X} W_v$ is computably enumerable. Deduce that the class of computably enumerable sets is closed under finite unions.
- (49) Show that there is a computably enumerable set X such that for all $w \in X$, W_w is a computable set, but $\bigcap_{w \in X} W_w$ is not computably enumerable.

- (50) Assume that \leq is a partial preorder on X, i.e., reflexive and transitive, and define \equiv by $x \equiv y$ if and only if $x \leq y$ and $y \leq x$. Show that \equiv is an equivalence relation and that \leq respects the equivalence classes, i.e., if $x \equiv x'$ and $x \leq y$, then $x' \leq y$, similarly, if $x \equiv x'$ and $y \leq x$, then $y \leq x'$.
 - Let X/\equiv be the set of \equiv -equivalence classes; if $[x], [y] \in X/\equiv$, define $[x] \leq [y]$ if and only if $x \leq y$ (why is this well defined?). Prove that $(X/\equiv, \leq)$ is a partially ordered set.
- (51) Show that \varnothing and \mathbb{W} are both minimal in the order \leq_m , incomparable in \leq_m , and that $\{\varnothing\}$ and $\{\mathbb{W}\}$ are \equiv_m -equivalence classes.
- (52) Assume that $X \neq \mathbb{B} \neq Y$ and $X \neq \emptyset \neq Y$. Show that the *Turing join* $X \oplus Y$ is the least upper bound of X and Y with respect to \leq_{m} (i.e., if $X, Y \leq_{\mathrm{m}} Z$, then $X \oplus Y \leq_{\mathrm{m}} Z$).
- (53) Show that a set $X \subseteq \mathbb{W}^k$ is Π_1 if and only if there is a computable set $Y \subseteq \mathbb{W}^{k+1}$ such that for all $\vec{w} \in \mathbb{W}^k$, we have

$$\vec{w} \in X \iff \forall v(\vec{w}, v) \in Y.$$

Use this to show that $\mathbf{Emp} \equiv_{\mathrm{m}} \mathbb{W} \backslash \mathbf{K}$.

[Hint. The set $\mathbb{W}\backslash \mathbf{K}$ is Π_1 -complete. Why?]

- (54) Prove that \mathbf{K} is not an index set.
- (55) Prove that **Inf** and **Tot** are neither Σ_1 nor Π_1 .
- (56) Let $g: \mathbb{W}^k \to \mathbb{W}$ be a total computable function. Consider $\mathbf{Eq}(g) := \{w \; ; \; f_{w,k} = g\}$ and show that $\mathbf{Tot} \leq_{\mathrm{m}} \mathbf{Eq}(g)$.