

Automata \& Formal Languages

Michaelmas Term 2022
Part II of the Mathematical Tripos
University of Cambridge Prof. Dr. B. Löwe

Example Sheet \#4

(45) Let $\Sigma=\{a, b\}$ and consider the register machine from Example (31) and produce code (M) according to the transformations given in the lectures. Assume that

$$
a<b<\boldsymbol{\varepsilon}<\mathbf{0}<\mathbf{1}<\boldsymbol{+}<\boldsymbol{?}<\boldsymbol{-}<(<)<,<\mapsto<\mathbf{~}
$$

and describe how you would calculate $\#(\operatorname{code}(M))$. [If you wish, you can also calculate the precise numerical value, but a description in words is enough.]
(46) Let $f: \mathbb{W}^{2} \rightarrow \mathbb{W}$ be a partial computable function. Show that the following sets are computably enumerable:
(a) $\{w$; there are three distinct words v such that $f(w, v) \downarrow\}$;
(b) $\{w$; there is a word v of even length such that $f(w, v) \downarrow\}$;
(c) $\{w$; there is a word v such that $f(w, v)=w * v\}$.
(47) Let $f: \mathbb{W} \rightarrow \mathbb{W}$ be a total bijective function. Show that f is computable if and only if f^{-1} is computable.
(48) Let $L \subseteq \mathbb{W}$. Show that L is computably enumerable if and only if there is a total computable function f such that $L=\operatorname{ran}(f)$.
(49) Show that a set $X \subseteq \mathbb{W}^{k}$ is Π_{1} if and only if there is a computable set $Y \subseteq \mathbb{W}^{k+1}$ such that for all $\vec{w} \in \mathbb{W}^{k}$, we have

$$
\vec{w} \in X \Longleftrightarrow \forall v(\vec{w}, v) \in Y
$$

Use this to show that $\mathbf{E m p} \equiv_{\mathrm{m}} \mathbb{W} \backslash \mathbf{K}$.
[Hint. We showed in the lectures that $\mathbb{W} \backslash \mathbf{K} \leq_{m} \mathbf{E m p}$. Furthermore, the set $\mathbb{W} \backslash \mathbf{K}$ is Π_{1}-complete. Why?]
(50) Let φ be a total computable function. A word w is called a fixed point of φ if $f_{\varphi(w), 1}=f_{w, 1}$. Show using the following steps that such a fixed point exists.
(a) Argue that the function

$$
g(u, v):=\left\{\begin{array}{cl}
f_{f_{u, 1}(u)}(v) & \text { if } u \in \mathbf{K} \text { and } \\
\uparrow & \text { otherwise }
\end{array}\right.
$$

is computable.
(b) By the $s-m-n$ theorem, there is a total computable function h such that $f_{h(u), 1}(v)=g(u, v)$. Let p be such that $f_{p, 1}=\varphi \circ h$ and $w:=h(p)$. Show that w is a fixed point of φ.
(51) Show that there is a w such that $\mathrm{W}_{w}=\{w\}$ and a w such that $\left|\mathrm{W}_{w}\right|=|w|$. Use the first statement to show that \mathbf{K} is not an index set.
(52) Suppose X is computably enumerable. Show that $\bigcup_{v \in X} \mathrm{~W}_{v}$ is computably enumerable. Deduce that the class of computably enumerable sets is closed under finite unions.
(53) Show that there is a computably enumerable set X such that for all $w \in X, \mathrm{~W}_{w}$ is a computable set, but $\bigcap_{w \in I} \mathrm{~W}_{w}$ is not computably enumerable.
(54) Assume that \leq is a partial preorder on X, i.e., reflexive and transitive, and define \equiv by $x \equiv y$ if and only if $x \leq y$ and $y \leq x$. Show that \equiv is an equivalence relation and that \leq respects the equivalence classes, i.e., if $x \equiv x^{\prime}$ and $x \leq y$, then $x^{\prime} \leq y$, similarly, if $x \equiv x^{\prime}$ and $y \leq x$, then $y \leq x^{\prime}$.
Let X / \equiv be the set of \equiv-equivalence classes; if $[x],[y] \in X / \equiv$, define $[x] \leq[y]$ if and only if $x \leq y$ (why is this well defined?). Prove that $(X / \equiv, \leq)$ is a partially ordered set.
(55) Show that \varnothing and \mathbb{W} are both minimal in the order \leq_{m}, incomparable in \leq_{m}, and that $\{\varnothing\}$ and $\{\mathbb{W}\}$ are \equiv_{m}-equivalence classes.
(56) Assume that $\{0,1\} \subseteq \Sigma$ and $X, Y \subseteq \mathbb{W}$. We defined the Turing join of two sets by $X \oplus Y:=0 X \cup 1 Y$. Show that $X \oplus Y$ is the least upper bound of X and Y with respect to \leq_{m} (i.e., if $X, Y \leq_{\mathrm{m}} Z$, then $\left.X \oplus Y \leq_{\mathrm{m}} Z\right)$.
(57) Prove that Inf and Tot are neither Σ_{1} nor Π_{1}.
(58) Let $g: \mathbb{W}^{k} \rightarrow \mathbb{W}$ be a total computable function. Consider $\mathbb{E q}(g):=\left\{w ; f_{w, k}=g\right\}$ and show that $\boldsymbol{\operatorname { T o t }} \leq_{\mathrm{m}} \mathbf{E q}(g)$.

