Automata \& Formal Languages
Michaelmas Term 2022
Part II of the Mathematical Tripos
University of Cambridge Prof. Dr. B. Löwe

Example Sheet \#2

(15) Work over the alphabet $\Sigma=\{0,1\}$ and for $n \geq 1$ consider

$$
\left.L_{n}:=\{w ; \text { there are } x, y \in \mathbb{W} \text { such that }|y|=n-1 \text { and } w=x 1 y)\right\}
$$

i.e., the set of words that have a 1 in the nth position counted from the end of the word. Show that:
(a) There is a nondeterministic automaton N with $n+1$ states such that $\mathcal{L}(N)=L_{n}$ and
(b) if D is a deterministic automaton with fewer than 2^{n} states, then $\mathcal{L}(D) \neq L_{n}$.
(16) Let R, S, T be regular expressions. For each of the following statements, either prove that it is true, or find a specific counterexample.
(a) $\mathcal{L}(R(S+T))=\mathcal{L}(R S+R T)$;
(d) $\mathcal{L}\left(R^{*} R\right)=\mathcal{L}\left(R^{+}\right)$;
(b) $\mathcal{L}((R+S) T)=\mathcal{L}(R T+S T)$;
(e) $\mathcal{L}\left(\left(R+S R^{*}\right)^{*}\right)=\mathcal{L}\left((R+S)^{*}\right)$;
(c) $\mathcal{L}(R+S T)=\mathcal{L}(R S+R T)$;
(f) $\mathcal{L}\left((R+S)^{+}\right)=\mathcal{L}\left(R^{+}+S^{+}\right)$
(17) Let L and M be languages over an alphabet Σ and consider the set equation $X=L X \cup M$. Prove the following statements:
(a) The language $L^{*} M$ is a solution for this equation.
(b) If Z is a solution for this equation, then $L^{*} M \subseteq Z$.
(c) If $\varepsilon \notin L$, then $L^{*} M$ is the only solution for this equation.
(18) Consider the regular grammar $G=(\Sigma, V, P, S)$ with $P=\{S \rightarrow a S, S \rightarrow a\}$. Prove that $\mathcal{L}(G)=\mathcal{L}\left(a^{+}\right)$.
(19) Consider the regular grammar $G=(\Sigma, V, P, S)$ with $P=\{S \rightarrow c S, S \rightarrow c A, A \rightarrow a A, A \rightarrow a B, B \rightarrow$ $b B, B \rightarrow b\}$. Find a regular expression R such that $\mathcal{L}(R)=\mathcal{L}(G)$.
(20) Minimise the following automaton using the construction given in the lectures.

(21) Give the minimal deterministic automaton for the language L_{n} discussed in (15).
(22) A tree graph is an acyclic connected directed graph. A language $L \subseteq \mathbb{W}$ is called a tree language if it is closed under initial segments, i.e., if $w \in L$ and v is an initial segment of w, then $v \in L$. Show that every tree language L defines a tree graph by using L as the set of vertices and having $E:=\{(w, w a) ; w, w a \in L\}$ as the set of edges. Characterise the tree graphs that are obtained in this way from a tree language. Justify your claim.
(23) Let G be the context-free grammar given by $S \rightarrow A B S, S \rightarrow A B, A \rightarrow a A, A \rightarrow a, B \rightarrow b A$. For each of the words aabaab, aaaaba, aabbaa, abaaba, either draw the parse tree that shows that the word lies in $\mathcal{L}(G)$ or argue that it does not lie in $\mathcal{L}(G)$.
(24) Consider $\Sigma=\left\{0,1, \varepsilon,(),,+, \varnothing,{ }^{+},{ }^{*}\right\}$. Define a context-free grammar G over Σ such that $\mathcal{L}(G)$ is the set of regular expressions over the alphabet $\{0,1\}$. Show that you cannot find a regular grammar with this property.
(25) Convert the context-free grammar given by the following production rules to Chomsky normal form, explaining the transformation steps in detail: $S \rightarrow a S b b, S \rightarrow T, T \rightarrow b T a a, T \rightarrow S$.
(26) Give a context-free grammar in Chomsky normal form for the languages $\left\{a^{m} b^{2 m} c^{k} ; m, k \geq 1\right\}$ and $\left\{a^{m} b^{k} a^{m} ; m, k \geq 1\right\}$. Justify your answer.
(27) Let $G=(\Sigma, V, P, S)$ be a context-free grammar in Chomsky normal form. Let

$$
\left.P^{\prime}:=P \cup\{A \rightarrow \varepsilon ; \text { there is some } a \in \Sigma \text { such that } A \rightarrow a \in P)\right\}
$$

and $G^{\prime}:=\left(\Sigma, V, P^{\prime}, S\right)$. Describe the language $\mathcal{L}\left(G^{\prime}\right)$ in words, giving an argument for your answer. What changes if G is not in Chomsky normal form?
(28) Suppose $\Sigma=\{a\}$ and that L is a language over Σ that satisfies the context free pumping lemma. Show that it satisfies the regular pumping lemma.
(29) For each of the following languages, decide whether it is context-free and provide an argument for your claim:
(a) $\left\{a^{n} b^{m} ; n \neq m, n+m>0\right\}$;
(f) $\left\{a^{p} ; p\right.$ is prime $\}$;
(b) $\left\{a^{m} b^{n} c^{m} d^{n} ; m, n \geq 1\right\}$;
(g) $\left\{a^{2 n} ; n \geq 1\right\}$;
(c) $\left\{a^{n} b^{m} c^{k} d^{\ell} ; 2 n=3 m\right.$ and $\left.5 k=7 \ell\right\}$;
(h) $\left\{w w ; w \in\{a, b\}^{+}\right\}$;
(d) $\left\{a^{n} b^{m} c^{k} d^{\ell} ; 2 n=3 k\right.$ and $\left.5 m=7 \ell\right\}$;
(i) $\{a, b\}^{+} \backslash\left\{w w ; w \in\{a, b\}^{+}\right\}$.
(30) Show that the class of context-free grammars is closed under the Kleene plus operation, i.e., if L is context-free, then so is L^{+}.

