PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2020-21
EXAMPLE SHEET 1

* denotes a harder problem. By convention, we take N :={0,1,2,...}.
(1) Give an example of a register machine, either via a program diagram or a sequence of

instructions, for computing each of the following functions

=m mod (n+1)

(2) Draw a program diagram for each of the following sequences of instructions, and identify
the upper register index of each program. Also, for the specified n, write down the

function on n variables that the program computes.

(a) (1,+,2),(1,4,0). n = 1.

(b) (1,—,2,5),(2,+,3),(3,+,4), (4,+,1),(3,-,6,0),(2,-,7,8),(1,+,6), (4,—,9,11),
(5,+,10), (2, +,8), (5, — 12 5), (4, +,11). n = 1.

(c) (2,+,2),(4,+,3),(3,—,5,7),(8,6),(5,+,6),(8,+,3),(3,+,0), (1,+,8). n = 4.

(3) Build up each of the following total recursive functions from the basic functions via

composition, recursion and minimisation

(a) The “predecessor function” p(n) = n — 1 and p(0) = 0.
(b) f(a,b, ¢, x) = az? + bx + ¢

(c) f(m,n)=m"

(d*) f(m,n) =m mod (n+1)

(4) Show that, for each k& > 1, each of the following functions is primitive recursive

[

(a) floorg(n) = |}
ifn=0 mod k

(b) dividep(n) = { otherwise

m

%
0
kL ifn=0 mod E™
0 otherwise

(c) powery(n,m)

Date: October 13, 2020.
1

II A&FL EXAMPLE SHEET 1

For the remainder of this sheet, in order to prove that there is an algorithm or that a
function is partial computable, you do not need to define a register machine or build up
the function from basic functions. It is sufficient to have a mathematical argument in the
usual style of a mathematical proof.

(5) Show there is an algorithm that, on input of a code n for a register machine program P,
halts iff P, halts on some input in some number of variables.

(6) Let E be an infinite subset of N. Show that E is recursive iff there is a strictly increasing
total recursive function f : N — N whose image is precisely F.

(7) (a) Show that the set of prime numbers is recursive.

(b) Show there is an algorithm that, on input of an integer n > 1, outputs the largest
prime p which divides n.

(¢) How do you thus respond to a critic who says “given an integer n which is the product
of two primes, first it is claimed that the difficulty of finding those primes can be
used as a basis for secure encryption, but now we’re saying that a straightforward
register machine can find these primes”.

(8) Let f: N — N be a total bijective function. Show that f is total recursive iff f~! is total
recursive.

(9) By using (s-m-n) or otherwise, show there is a total computable function 4 : N — N such
that, for each m which defines a register machine code, the partial computable function
Jn(m),1 satisfies:

faemy 1 (@) = fma(x) +1 Vo €N

(10*) Show there is an r.e. set E such that for every n € E, f, 1 is primitive recursive, and
moreover every primitive recursive function on 1 variable occurs as f, 1 for some n € E.

(11) (Not so hard but rather long)
We define Cantor’s pairing function (-,-) : N> — N by

1
(@,y) =@ +y)e+y+1)+y
and its natural extension, (-,...,-); : N¥ = N, inductively via

<IL’1, .. .,:ck>k = <<x1, e 7$k71>k_1 ,xk>

(a) Show that (-,-) is a total bijection from N? — N.

(b) Show that (-,-) is a total computable function.

(c) Show that (-,...,-)r : N¥ = N is a total computable bijection.
)

(d) Show that there is a total computable function h : N> — N such that, for each m, k,
the partial computable function f,, j satisfies:

g (1, 2k) = frmaa ((T1, - 2i)k) V(zn, .. 2p) € NF

(e) Show that with (-,...,-); : N¥ — N we can produce all multi-variable partial com-
putable functions from just the one-variable ones.

