PART II AUTOMATA AND FORMAL LANGUAGES MICHAELMAS 2016-17 EXAMPLE SHEET 2

You may appeal to Church's thesis at any time, provided you clearly say so. * denotes a harder problem.

- (1) Give decompositions, with proofs, of the integers $\mathbb{N} = A \sqcup B$ into disjoint infinite sets A, B where:
 - (a) Both A, B are r.e.
 - (b) One of A, B is r.e., the other is not.
 - (c) Neither of A, B are r.e.
- (2) Give examples, with proofs, of infinite collections of recursive sets whose union:
 - (a) Is recursive.
 - (b) Is r.e. but not recursive.
 - (c) Is not r.e., and its complement is not r.e. either.
- (3) Let A be a recursive set, and define the set

 $B = \{2n \mid n \in A\} \cup \{2n+1 \mid n \in \mathbb{K}\}\$

Is B recursive? If not, which of B and $\mathbb{N} \setminus B$ are r.e., if any? Prove your answers.

- (4) Construct DFA's, via transition diagrams, which accept the following languages:
 - (a) $\{w \in \{0,1\}^* \mid |w| > 2\}.$
 - (b) $\{w \in \{0,1\}^* \mid w \text{ is an alternating sequence of 1's and 0's }\}$.
 - (c) $\{w \in \{0,1\}^* \mid w \text{ is a multiple of } 3 \text{ when interpreted in binary } \}$.
 - (d) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains } ababa \text{ as a substring }\}.$
- (5) Construct NFA's, via transition diagrams, which accept the following languages:
 - (a) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains ababa as a substring }\}.$
 - (b) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains } dpmms \text{ and/or } damtp \text{ as a substring } \}$.
 - (c) $\{w \in \{a, \dots, z\}^* \mid w \in \{what, where, when\}\}.$

Use the subset construction to convert (5a) to a DFA.

Date: October 23, 2016.

- (6) Construct an ϵ -NFA which accepts the *union* of the three languages from question (5), and has only *one* accept state.
- (7) Let L be a regular language over Σ . Prove that the complement of L, $\Sigma^* \setminus L$, is also a regular language over Σ .
- (8) Let Σ be a finite alphabet, and L be a regular language over Σ .
 - (a) Fix an ordering of Σ , and use this to describe a well-ordering $\{w_1, w_2, \ldots\}$ of Σ^* by extending the idea of the shortlex ordering of \mathbb{N}^m .
 - (b) Using this ordering of Σ^* , show that $\{n \in \mathbb{N} \mid w_n \in L\}$ is a recursive set.
- (9) Prove that the set $\{n \in \mathbb{N} \mid |W_n| > 5\}$ is r.e., but not recursive.
- (10) Show that, for each total recursive function $h : \mathbb{N} \to \mathbb{N}$, there is some $n \in \mathbb{N}$ with $f_{n,1} = f_{h(n),1}$ as functions. This is known as the *Recursion Theorem*. *Hint: Use the s-m-n theorem, and a universal partial recursive function.*
- (11*) Give an example of an infinite collection of recursive sets $\{W_n\}_{n\in I}$, whose index set I is r.e., for which

$$\left(\bigcap_{n \in I} W_n \right)$$

is not r.e.

- (12) Consider the set $X = \{n \in \mathbb{N} \mid n \text{ codes a program and } f_{n,1} \text{ is total } \}.$
 - (a) Show that $\mathbb{K} \leq_m X$, and thus that X is not recursive.
 - (b) Show that $\mathbb{N} \setminus X$ is not r.e.
 - (c^*) Show that X is not r.e.
- (13*) Consider the two sets $A = \{n \in \mathbb{N} \mid n \text{ codes a program and } |W_n| = \infty\}$ and $B = \{n \in \mathbb{N} \mid n \text{ codes a program and } W_n = \mathbb{N}\}.$
 - (a) With X as in (12), show that B = X.
 - (b) Show that $\mathbb{K} \leq_m A \leq_m B$.
 - (c) Show that $\mathbb{N} \setminus \mathbb{K} \leq_m A$.
- (14) Given an explicit code m for a register machine P_m , consider the set

 $T_m := \{ n \in \mathbb{N} \mid n \text{ codes a program and } W_m \subseteq W_n \}$

Construct two explicit codes m, m' such that T_m is recursive, and $T_{m'}$ is not r.e. Hint: Use the results of questions (12) and (13).

(15*) Let g be a total recursive function on k variables. Show that, with X as in (12), we have $X \leq_m \{n \in \mathbb{N} \mid n \text{ codes a program and } f_{n,k} = g \text{ as functions } \}$. Hence show there is no partial algorithm to verify if answers to question (1) of example sheet 1 are correct, nor a partial algorithm to verify if they are incorrect.