PART II AUTOMATA AND FORMAL LANGUAGES MICHAELMAS 2015-16 EXAMPLE SHEET 3

* denotes a harder problem.

- (1) Construct ϵ -NFA's for the following regular languages:
 - (a) All words $w \in \{0,1\}^*$ consisting of either the string 01 repeated some number of times (possibly none), or the string 010 repeated some number of times (possibly none).
 - (b) All words $w \in \{a, b, c\}^*$ consisting of some number of *a*'s (possibly none), followed by some number of *b*'s (at least one), followed by some number of *c*'s (possibly none).
 - (c) All words $w \in \{0,1\}^*$ which contain a 1 somewhere in the last 5 positions. If |w| < 5, then w must contain a 1 somewhere.
- (2) Construct regular expressions for the languages 1a and 1b above.
- (3) Convert each of the following regular expressions to ϵ -NFA's:
 - (a) (0+1)(01)
 - (b) $(\mathbf{a} + \mathbf{b}\mathbf{b})^*(\mathbf{b}\mathbf{a}^* + \epsilon)$
 - (c) $((aa^*)^*b)^* + c$
- (4) Prove that the following language is regular:

 $\{w \in \{0,1\}^* \mid w \text{ contains no more than 5 consecutive 0's}\}$

- (5) Let R, S, T be regular expressions. For each of the following statements, either prove that it is true, or find a specific counterexample.
 - (a) $\mathcal{L}(R(S+T)) = \mathcal{L}(RS) + \mathcal{L}(RT)$
 - (b) $\mathcal{L}((R^*)^*) = \mathcal{L}(R^*)$
 - (c) $\mathcal{L}((RS)^*) = \mathcal{L}(R^*S^*)$
 - (d) $\mathcal{L}((R+S)^*) = \mathcal{L}(R^*) + \mathcal{L}(S^*)$
 - (e) $\mathcal{L}((R^*S^*)^*) = \mathcal{L}((R+S)^*)$

EXAMPLE SHEET 3

- (6) Use the pumping lemma to show that none of the following languages are regular:
 - (a) $\{a^n b^n \mid n \ge 0\}$
 - (b) $\{a^{2n}b^{2n} \mid n \ge 0\}$
 - (c) $\{ww \mid w \in \{0,1\}^*\}$
- (7) For each of the following languages, determine whether or not they are regular. Justify your answers.
 - (a) $\{a^n b^{2n} \mid n \ge 0\}$
 - (b) $\{a^n b^m \mid n \neq m\}$
 - (c) $\{xcx \mid x \in \{a, b\}^*\}$
 - (d) $\{xcy \mid x, y \in \{a, b\}^*\}$
 - (e) $\mathcal{L}((\mathbf{a}^*\mathbf{b})^*\mathbf{a}^*)$
 - (f) $\{a^n b^m \mid n > m\}$
 - (g) $\{a^n b^{n+100} \mid n \ge 0\}$
 - (h) $\{a^n b^m \mid n \ge m \text{ and } m \le 1000\}$
 - (i) $\{a^n b^m \mid n \ge m \text{ and } m \ge 1000\}$
- (8) Prove that no infinite subset of $\{0^n 1^n \mid n \ge 0\}$ is a regular language.
- (9) Let D be a DFA with N states. Prove the following:
 - (a) If D accepts at least one word, then D accepts a word of length less than N.
 - (b) If D accepts at least one word of length $\geq N$, then D accepts infinitely many words.
- (10) Is the following language regular:

 $\{1^p \mid p \text{ is a prime }\}$

Justify your answer.

- (11*) Is there an algorithm which takes as input a DFA D and decides whether or not $\mathcal{L}(D)$ is empty? If so, describe such an algorithm; if not, explain why not.
- (12*) For any $X \subseteq \{1\}^*$, show that X^* is a regular language.

 $\mathbf{2}$