

PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2015-16
EXAMPLE SHEET 2

* denotes a harder problem.

(1) Give decompositions, with proofs, of the integers $\mathbb{N} = A \sqcup B$ into disjoint infinite sets A, B where:

- (a) Both A, B are recursive.
- (b) Both A, B are r.e.
- (c) One of A, B is r.e., the other is not.
- (d) Neither of A, B are r.e.

(2) Give examples, with proofs, of infinite collections of recursive sets whose union:

- (a) Is recursive.
- (b) Is r.e. but not recursive.
- (c) Is not r.e., and its complement is not r.e. either.

(3) Let A be a recursive set, and define the set

$$B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in \mathbb{K}\}$$

Is B recursive? If not, which of B and $\mathbb{N} \setminus B$ are r.e., if any? Provide proofs with your answers.

(4) Construct DFA's, either via transition diagrams or transition tables, which accept precisely the following languages:

- (a) $\{w \in \{0, 1\}^* \mid |w| = 2\}.$
- (b) $\{w \in \{0, 1\}^* \mid |w| > 2\}.$
- (c) $\{w \in \{0, 1\}^* \mid w \text{ is an alternating sequence of 1's and 0's }\}.$
- (d) $\{w \in \{0, 1\}^* \mid w \text{ is a multiple of 3 when interpreted in binary }\}.$
- (e) $\{w \in \{a, \dots, z\}^* \mid w = dpmmss\}.$
- (f) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains } dpmmss \text{ as a substring }\}.$

(5) Construct NFA's, either via transition diagrams or transition tables, which accept precisely the following languages:

- (a) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains } dpmm as a substring}\}.$
- (b) $\{w \in \{a, \dots, z\}^* \mid w \text{ contains } dpmm and/or damtp as a substring}\}.$
- (c) $\{w \in \{a, \dots, z\}^* \mid w \in \{what, where, when\}\}.$

(6) Use the subset construction to convert each of the NFA's you constructed in question 5 to DFA's.

(7) Let L be a regular language over Σ . Prove that the complement of L , $\Sigma^* \setminus L$, is also a regular language over Σ .

(8) Let Σ be a finite alphabet.

- (a) By placing an ordering on Σ , give a computable ordering of Σ^* .
- (b) Fix some computable ordering of Σ^* , and write w_n for the n^{th} word in this ordering. Show that the function $g : \mathbb{N} \rightarrow \Sigma^*$ given by

$$g(n) := w_n$$

is a recursive bijection. That is, given n we can compute the word w_n , and given $v \in \Sigma^*$ we can compute n for which $v = w_n$ as words.

- (c) Let L be a regular language over Σ . For any fixed computable ordering of Σ^* , show that

$$\{n \in \mathbb{N} \mid w_n \in L\}$$

is a recursive set.

(9) Prove that the set $\{n \in \mathbb{N} \mid |W_n| > 5\}$ is r.e.

(10*) Prove that the set $\{n \in \mathbb{N} \mid |W_n| > 5\}$ from question 9 is not recursive, without appealing to Rice's theorem.

(11*) Give an example of an infinite collection of recursive sets $\{W_n\}_{n \in I}$, whose index set I is r.e., for which

$$\bigcap_{n \in I} W_n$$

is not r.e.