Exercise 1. Suppose $f \in L_{l o c}^{p}\left(\mathbb{R}^{n}\right)$ is a periodic function and let:

$$
q=\left\{x \in \mathbb{R}^{n}:\left|x_{j}\right|<\frac{1}{2}, j=1, \ldots, n\right\} .
$$

Show that for any $\epsilon>0$ there exists a smooth periodic function f_{ϵ} such that $\left\|f-f_{\epsilon}\right\|_{L^{p}(q)}<\epsilon$.
Exercise 2. Show that the series $S(x)=\sum_{k \in \mathbb{Z}^{n}} e^{-|x+k|^{2} / 2}$ converges for every $x \in(0,1]^{n}$ and calculate the Fourier coefficients of S.

Exercise 3. Suppose that $\Omega \subset \mathbb{R}^{n}$ is open and bounded, let $f \in C_{c}^{\infty}(\Omega)$, and suppose $0<\epsilon<1$.
a) Show that $\int_{\Omega}\left(|f|^{2}+\epsilon\right)^{\frac{p}{2}} d x \rightarrow\|f\|_{L^{p}}^{p}$ as $\epsilon \rightarrow 0$.
b) By considering $\int_{\Omega}\left(|f|^{2}+\epsilon\right)^{\frac{p}{2}} d x=\int_{\mathbb{R}^{n}}\left(\frac{1}{n} \operatorname{div} x\right)\left(|f|^{2}+\epsilon\right)^{\frac{p}{2}} d x$, or otherwise, show that there exists a constant C, depending on Ω, p but not on f, such that $\|f\|_{L^{p}} \leq C\|D f\|_{L^{p}}$.

Exercise 4. Let $s \in \mathbb{R}$.

a) Show that \mathcal{S} is a dense subset of $H^{S}\left(\mathbb{R}^{n}\right)$.
b) Find a condition on s such that $\delta_{x} \in H^{s}\left(\mathbb{R}^{n}\right)$.
c) Show that $H^{t}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $H^{s}\left(\mathbb{R}^{n}\right)$ for $s<t$.
d) Show that the derivative D^{α} is a bounded linear map from $H^{s+k}\left(\mathbb{R}^{n}\right)$ into $H^{s}\left(\mathbb{R}^{n}\right)$, where $k=|\alpha|$.
e) (*) Show that the pairing $\langle\rangle:, H^{-s}\left(\mathbb{R}^{n}\right) \times H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$, which acts on $f \in H^{-s}\left(\mathbb{R}^{n}\right), g \in H^{s}\left(\mathbb{R}^{n}\right)$ by

$$
\langle f, g\rangle=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) \hat{g}(\xi) d \xi
$$

is well defined, and show that the map $g \mapsto\langle f, g\rangle$ is a bounded linear operator on $H^{s}\left(\mathbb{R}^{n}\right)$. Deduce that $H^{s}\left(\mathbb{R}^{n}\right)^{\prime}$ may be identified with $H^{-s}\left(\mathbb{R}^{n}\right)$, and that $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset H^{s}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for all s.

Exercise 5. For two probability measures μ, v on \mathbb{R}^{n} their convolution $\mu * v$ is defined via

$$
\mu * v(\phi)=\int_{\mathbb{R}^{n}} \phi(x+y) d \mu(x) d v(y), \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

i) Show that $\mu * v$ defines an element $T_{\mu * \nu}$ of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and find $\hat{T}_{\mu * \nu}$.
ii) Let $n=1$ and let μ be a probability measure on \mathbb{R} such that $\int_{\mathbb{R}} x d \mu(x)=0, \int_{\mathbb{R}} x^{2} d \mu(x)=1$. Denote by $\mu^{* k}=\mu * \cdots * \mu$ the k-fold convolution (with $k \in \mathbb{N}$ factors) and define a Borel measure on \mathbb{R}

$$
\lambda_{k}(A)=\mu^{* k}(\sqrt{k} A), \quad \text { where } \sqrt{k} A=\{\sqrt{k} x: x \in A\}, \quad A \subseteq \mathbb{R} \text { Borel. }
$$

Show that the corresponding distributions $T_{\lambda_{k}}$ converge in $\mathcal{S}^{\prime}(\mathbb{R})$ as $k \rightarrow \infty$ and identify the limit.
iii) (*) Show that $T_{\lambda_{k}}$ defines a sequence in $H^{-s}(\mathbb{R})$ whenever $s>1 / 2$ and that it converges in this space. What if $s \leq 1 / 2$?

Exercise 6. a) Suppose $s=\frac{n}{2}+\gamma$ for some $0<\gamma<1$. Show that there exists a constant $C_{n, \gamma}>0$ such that for all $x, y \in \mathbb{R}^{n}$:

$$
\int_{\mathbb{R}^{n}} \frac{\left|e^{i x \cdot \xi}-e^{i y \cdot \xi}\right|^{2}}{|\xi|^{2 s}} d \xi \leqslant C_{n, \gamma}|x-y|^{2 \gamma}
$$

b) Show that if $s=\frac{n}{2}+k+\gamma$ for some $k \in \mathbb{Z}_{\geqslant 0}, 0<\gamma<1$, then

$$
H^{s}\left(\mathbb{R}^{n}\right) \subset C^{k, \gamma}\left(\mathbb{R}^{n}\right)
$$

Exercise 7. Fix $s \in \mathbb{R}$, and suppose that $f \in H^{s}\left(\mathbb{R}^{n}\right)$.
a) Show that there exists a unique $u \in H^{s+4}\left(\mathbb{R}^{n}\right)$ which solves:

$$
\Delta^{2} u+u=f .
$$

b) Show further that there exists $C>0$ such that $\|u\|_{H^{s+4}} \leqslant C\|f\|_{H^{s}}$.
c) For what values of s does the equation hold in the sense of classical derivatives (possibly after redefining u, f on a set of measure zero) ?

Exercise 8. Assume $s>\frac{1}{2}$ and suppose $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Define $T u \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$ by:

$$
T u\left(x^{\prime}\right)=u\left(x^{\prime}, 0\right), \quad x^{\prime} \in \mathbb{R}^{n-1}
$$

a) Show that if $\xi^{\prime} \in \mathbb{R}^{n-1}$:

$$
\widehat{T u}\left(\xi^{\prime}\right)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{u}\left(\xi^{\prime}, \xi_{n}\right) d \xi_{n}
$$

b) Deduce that:

$$
\left|\widehat{T u}\left(\xi^{\prime}\right)\right|^{2} \leqslant \frac{1}{(2 \pi)^{2}}\left(\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{s}\left|\hat{u}\left(\xi^{\prime}, \xi_{n}\right)\right|^{2} d \xi_{n}\right)\left(\int_{\mathbb{R}} \frac{d \xi_{n}}{\left(1+|\xi|^{2}\right)^{s}}\right),
$$

where $\xi=\left(\xi^{\prime}, \xi_{n}\right)$.
c) By changing variables in the second integral above to $\xi_{n}=t \sqrt{1+\left|\xi^{\prime}\right|^{2}}$, show that there exists a constant $C(s)$ such that:

$$
\|T u\|_{H^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)} \leqslant C(s)\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)} .
$$

d) Conclude that T extends to a bounded linear operator $T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)$.
e) $\left(^{*}\right)$ Suppose $v \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$ and let $\phi \in C_{c}^{\infty}(\mathbb{R})$ satisfy $\int_{\mathbb{R}} \phi(t) d t=\sqrt{2 \pi}$. Define u through its Fourier transform by:

$$
\hat{u}\left(\xi^{\prime}, \xi_{n}\right)=\frac{\hat{v}\left(\xi^{\prime}\right)}{\sqrt{1+\left|\xi^{\prime}\right|^{2}}} \phi\left(\frac{\xi_{n}}{\sqrt{1+\left|\xi^{\prime}\right|^{2}}}\right) .
$$

Show that there exists a constant $C>0$ such that:

$$
\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)} \leqslant C\|v\|_{H^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)}
$$

and that $T u=v$. Conclude that $T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)$ is surjective.
Exercise 9. Suppose that $\Omega \subset \mathbb{R}^{n}$ is open and bounded. For $u \in H_{0}^{1}(\Omega)$, define the Dirichlet energy:

$$
E[u]=\int_{\Omega}|D u|^{2} d x .
$$

a) Suppose that $\left(u_{i}\right)_{i=1}^{\infty}$ is a sequence with $u_{i} \in H_{0}^{1}(\Omega)$ such that $u_{i} \rightharpoonup u$. Show that $E[u] \leqslant \lim _{\inf _{i}} E\left[u_{i}\right]$.
b) Consider the set

$$
\mathcal{E}_{1}=\left\{E[u]: u \in H_{0}^{1}(\Omega),\|u\|_{L^{2}}=1\right\}
$$

Let $\lambda_{1}:=\inf \mathcal{E}$. Show that there exists $w_{1} \in H_{0}^{1}(\Omega)$ with $\left\|w_{1}\right\|_{L^{2}}=1$ and $E\left[w_{1}\right]=\lambda_{1}$, and deduce $\lambda_{1}>0$.
c) Deduce that:

$$
\lambda_{1}\|u\|_{L^{2}}^{2} \leqslant \int_{\Omega}|D u|^{2} d x
$$

holds for all $u \in H_{0}^{1}(\Omega)$, with equality for $u=w_{1}$. This is Poincaré's inequality.
d) By considering $u=w_{1}+t \phi$ for $t \in \mathbb{R}, \phi \in \mathscr{D}(\Omega)$, or otherwise, show that w_{1} satisfies

$$
-\Delta w_{1}=\lambda_{1} w_{1}
$$

where we understand this equation as holding in $\mathscr{D}^{\prime}(\Omega)$.
e) (*) Suppose $\chi \in C_{c}^{\infty}(\Omega)$, and let $v=\chi w_{1}$. Show that v satisfies $-\Delta v+v=f$, where we understand the equation as holding in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, where $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Deduce that $v \in H^{2}\left(\mathbb{R}^{n}\right)$. By iterating this argument, deduce that $w_{1} \in H_{0}^{1}(\Omega) \cap C^{\infty}(\Omega)$.
f) (*) By considering

$$
\mathcal{E}_{2}=\left\{E[u]: u \in H_{0}^{1}(\Omega),\|u\|_{L^{2}}=1,\left(u, w_{1}\right)_{L^{2}}=0\right\},
$$

or otherwise, show that there exists $\lambda_{2} \geqslant \lambda_{1}$ and $w_{2} \in H_{0}^{1}(\Omega) \cap C^{\infty}(\Omega)$ with $w_{2} \neq w_{1},\left\|w_{2}\right\|_{L^{2}}=1$ solving

$$
-\Delta w_{2}=\lambda_{2} w_{2} .
$$

