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Exercise 1. Suppose 𝑓 ∈ 𝐿
𝑝

𝑙𝑜𝑐
(R𝑛) is a periodic function and let:

𝑞 =

{
𝑥 ∈ R𝑛 :

��𝑥 𝑗

�� < 1
2
, 𝑗 = 1, . . . , 𝑛

}
.

Show that for any 𝜖 > 0 there exists a smooth periodic function 𝑓𝜖 such that ‖ 𝑓 − 𝑓𝜖 ‖𝐿𝑝 (𝑞) < 𝜖.

Exercise 2. Show that the series 𝑆(𝑥) = ∑
𝑘∈Z𝑛 𝑒

−|𝑥+𝑘 |2/2 converges for every 𝑥 ∈ (0, 1]𝑛 and calculate the
Fourier coefficients of 𝑆.

Exercise 3. Suppose that Ω ⊂ R𝑛 is open and bounded, let 𝑓 ∈ 𝐶∞
𝑐 (Ω), and suppose 0 < 𝜖 < 1.

a) Show that
∫
Ω
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥 → ‖ 𝑓 ‖ 𝑝
𝐿𝑝 as 𝜖 → 0.

b) By considering
∫
Ω
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥 =
∫
R𝑛

(
1
𝑛
div 𝑥

)
( | 𝑓 |2 + 𝜖)

𝑝

2 𝑑𝑥, or otherwise, show that there exists a
constant 𝐶, depending on Ω, 𝑝 but not on 𝑓 , such that ‖ 𝑓 ‖𝐿𝑝 ≤ 𝐶 ‖𝐷 𝑓 ‖𝐿𝑝 .

Exercise 4. Let 𝑠 ∈ R.

a) Show that 𝒮 is a dense subset of 𝐻𝑠 (R𝑛).

b) Find a condition on 𝑠 such that 𝛿𝑥 ∈ 𝐻𝑠 (R𝑛).

c) Show that 𝐻𝑡 (R𝑛) is continuously embedded in 𝐻𝑠 (R𝑛) for 𝑠 < 𝑡.

d) Show that the derivative 𝐷𝛼 is a bounded linear map from 𝐻𝑠+𝑘 (R𝑛) into 𝐻𝑠 (R𝑛), where 𝑘 = |𝛼 |.

e) (*) Show that the pairing 〈, 〉 : 𝐻−𝑠 (R𝑛) × 𝐻𝑠 (R𝑛) → C, which acts on 𝑓 ∈ 𝐻−𝑠 (R𝑛), 𝑔 ∈ 𝐻𝑠 (R𝑛) by

〈 𝑓 , 𝑔〉 = 1
(2𝜋)𝑛

∫
R𝑛

𝑓 (b)�̂�(b)𝑑b

is well defined, and show that the map 𝑔 ↦→ 〈 𝑓 , 𝑔〉 is a bounded linear operator on 𝐻𝑠 (R𝑛). Deduce
that 𝐻𝑠 (R𝑛) ′ may be identified with 𝐻−𝑠 (R𝑛), and that 𝒮(R𝑛) ⊂ 𝐻𝑠 (R𝑛) ⊂ 𝒮

′(R𝑛) for all 𝑠.

Exercise 5. For two probability measures `, a on R𝑛 their convolution ` ∗ a is defined via

` ∗ a(𝜙) =
∫
R𝑛

𝜙(𝑥 + 𝑦)𝑑`(𝑥)𝑑a(𝑦), 𝜙 ∈ 𝒮(R𝑛).

i) Show that ` ∗ a defines an element 𝑇`∗a of 𝒮′(R𝑛) and find 𝑇`∗a .
ii) Let 𝑛 = 1 and let ` be a probability measure on R such that

∫
R
𝑥𝑑`(𝑥) = 0,

∫
R
𝑥2𝑑`(𝑥) = 1. Denote

by `∗𝑘 = ` ∗ · · · ∗ ` the 𝑘-fold convolution (with 𝑘 ∈ N factors) and define a Borel measure on R

_𝑘 (𝐴) = `∗𝑘
(√

𝑘𝐴
)
, where

√
𝑘𝐴 = {

√
𝑘𝑥 : 𝑥 ∈ 𝐴}, 𝐴 ⊆ R Borel.

Show that the corresponding distributions 𝑇_𝑘
converge in 𝒮

′(R) as 𝑘 → ∞ and identify the limit.
iii) (*) Show that 𝑇_𝑘

defines a sequence in 𝐻−𝑠 (R) whenever 𝑠 > 1/2 and that it converges in this
space. What if 𝑠 ≤ 1/2?

Exercise 6. a) Suppose 𝑠 = 𝑛
2 + 𝛾 for some 0 < 𝛾 < 1. Show that there exists a constant 𝐶𝑛,𝛾 > 0 such

that for all 𝑥, 𝑦 ∈ R𝑛: ∫
R𝑛

��𝑒𝑖𝑥 ·b − 𝑒𝑖𝑦 ·b
��2

|b |2𝑠
𝑑b 6 𝐶𝑛,𝛾 |𝑥 − 𝑦 |2𝛾
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b) Show that if 𝑠 = 𝑛
2 + 𝑘 + 𝛾 for some 𝑘 ∈ Z>0, 0 < 𝛾 < 1, then

𝐻𝑠 (R𝑛) ⊂ 𝐶𝑘,𝛾 (R𝑛).

Exercise 7. Fix 𝑠 ∈ R, and suppose that 𝑓 ∈ 𝐻𝑠 (R𝑛).

a) Show that there exists a unique 𝑢 ∈ 𝐻𝑠+4(R𝑛) which solves:

Δ2𝑢 + 𝑢 = 𝑓 .

b) Show further that there exists 𝐶 > 0 such that ‖𝑢‖𝐻 𝑠+4 6 𝐶 ‖ 𝑓 ‖𝐻 𝑠 .

c) For what values of 𝑠 does the equation hold in the sense of classical derivatives (possibly after redefining
𝑢, 𝑓 on a set of measure zero)?

Exercise 8. Assume 𝑠 > 1
2 and suppose 𝑢 ∈ 𝒮(R𝑛). Define 𝑇𝑢 ∈ 𝒮(R𝑛−1) by:

𝑇𝑢(𝑥 ′) = 𝑢(𝑥 ′, 0), 𝑥 ′ ∈ R𝑛−1.

a) Show that if b ′ ∈ R𝑛−1:
𝑇𝑢(b ′) = 1

2𝜋

∫
R
�̂�(b ′, b𝑛)𝑑b𝑛.

b) Deduce that:

���𝑇𝑢(b ′)���2 6 1
(2𝜋)2

(∫
R
(1 + |b |2)𝑠 |�̂�(b ′, b𝑛) |2 𝑑b𝑛

) ©«
∫
R

𝑑b𝑛(
1 + |b |2

)𝑠 ª®®¬ ,
where b = (b ′, b𝑛).

c) By changing variables in the second integral above to b𝑛 = 𝑡

√︃
1 + |b ′ |2, show that there exists a constant

𝐶 (𝑠) such that:
‖𝑇𝑢‖

𝐻
𝑠− 1

2 (R𝑛−1)
6 𝐶 (𝑠) ‖𝑢‖𝐻 𝑠 (R𝑛) .

d) Conclude that 𝑇 extends to a bounded linear operator 𝑇 : 𝐻𝑠 (R𝑛) → 𝐻𝑠− 1
2 (R𝑛−1).

e) (*) Suppose 𝑣 ∈ 𝒮(R𝑛−1) and let 𝜙 ∈ 𝐶∞
𝑐 (R) satisfy

∫
R
𝜙(𝑡)𝑑𝑡 =

√
2𝜋. Define 𝑢 through its Fourier

transform by:

�̂�(b ′, b𝑛) =
�̂�(b ′)√︃
1 + |b ′ |2

𝜙
©«

b𝑛√︃
1 + |b ′ |2

ª®®¬ .
Show that there exists a constant 𝐶 > 0 such that:

‖𝑢‖𝐻 𝑠 (R𝑛) 6 𝐶 ‖𝑣‖
𝐻

𝑠− 1
2 (R𝑛−1)

and that 𝑇𝑢 = 𝑣. Conclude that 𝑇 : 𝐻𝑠 (R𝑛) → 𝐻𝑠− 1
2 (R𝑛−1) is surjective.

Exercise 9. Suppose that Ω ⊂ R𝑛 is open and bounded. For 𝑢 ∈ 𝐻1
0 (Ω), define the Dirichlet energy:

𝐸 [𝑢] =
∫
Ω

|𝐷𝑢 |2 𝑑𝑥.

a) Suppose that (𝑢𝑖)∞𝑖=1 is a sequence with 𝑢𝑖 ∈ 𝐻1
0 (Ω) such that 𝑢𝑖 ⇀ 𝑢. Show that 𝐸 [𝑢] 6 lim inf𝑖 𝐸 [𝑢𝑖].
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b) Consider the set
E1 = {𝐸 [𝑢] : 𝑢 ∈ 𝐻1

0 (Ω), ‖𝑢‖𝐿2 = 1}

Let _1 := inf E. Show that there exists 𝑤1 ∈ 𝐻1
0 (Ω) with ‖𝑤1‖𝐿2 = 1 and 𝐸 [𝑤1] = _1, and deduce

_1 > 0.

c) Deduce that:
_1 ‖𝑢‖2

𝐿2 6

∫
Ω

|𝐷𝑢 |2 𝑑𝑥

holds for all 𝑢 ∈ 𝐻1
0 (Ω), with equality for 𝑢 = 𝑤1. This is Poincaré’s inequality.

d) By considering 𝑢 = 𝑤1 + 𝑡𝜙 for 𝑡 ∈ R, 𝜙 ∈ 𝒟(Ω), or otherwise, show that 𝑤1 satisfies

−Δ𝑤1 = _1𝑤1,

where we understand this equation as holding in 𝒟
′(Ω).

e) (*) Suppose 𝜒 ∈ 𝐶∞
𝑐 (Ω), and let 𝑣 = 𝜒𝑤1. Show that 𝑣 satisfies −Δ𝑣 + 𝑣 = 𝑓 , where we understand

the equation as holding in 𝒮
′(R𝑛), where 𝑓 ∈ 𝐿2(R𝑛). Deduce that 𝑣 ∈ 𝐻2(R𝑛). By iterating this

argument, deduce that 𝑤1 ∈ 𝐻1
0 (Ω) ∩ 𝐶∞(Ω).

f) (*) By considering
E2 = {𝐸 [𝑢] : 𝑢 ∈ 𝐻1

0 (Ω), ‖𝑢‖𝐿2 = 1, (𝑢, 𝑤1)𝐿2 = 0},

or otherwise, show that there exists _2 > _1 and 𝑤2 ∈ 𝐻1
0 (Ω) ∩ 𝐶∞(Ω) with 𝑤2 ≠ 𝑤1, ‖𝑤2‖𝐿2 = 1

solving
−Δ𝑤2 = _2𝑤2.
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