Exercise 1. a) Show that $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is a vector subspace of $\mathcal{E}\left(\mathbb{R}^{n}\right)$. Show that if $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is a sequence of rapidly decreasing functions which tends to zero in $\mathcal{S}\left(\mathbb{R}^{n}\right)$, then $\phi_{j} \rightarrow 0$ in $\mathcal{E}\left(\mathbb{R}^{n}\right)$.
b) Show that $\mathscr{D}\left(\mathbb{R}^{n}\right)$ is a vector subspace of $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Show that if $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is a sequence of compactly supported functions which tends to zero in $\mathscr{D}\left(\mathbb{R}^{n}\right)$ then $\phi_{j} \rightarrow 0$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
c) Give an example of a sequence $\left\{\phi_{j}\right\}_{j=1}^{\infty} \subset C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that
i) $\phi_{j} \rightarrow 0$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$, but ϕ_{j} has no limit in $\mathscr{D}\left(\mathbb{R}^{n}\right)$.
ii) $\phi_{j} \rightarrow 0$ in $\mathcal{E}\left(\mathbb{R}^{n}\right)$, but ϕ_{j} has no limit in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.

Exercise 2. For each $X \in\left\{\mathscr{D}\left(\mathbb{R}^{n}\right), \mathcal{S}\left(\mathbb{R}^{n}\right), \mathscr{E}\left(\mathbb{R}^{n}\right)\right\}$, suppose $\phi \in X$ and establish:
a) If $x_{l} \in \mathbb{R}^{n}, x_{l} \rightarrow 0$, then

$$
\tau_{x_{l}} \phi \rightarrow \phi, \quad \text { in } X \text { as } l \rightarrow \infty,
$$

where τ_{x} is the translation operator defined by $\tau_{x} \phi(y):=\phi(y-x)$.
b) If $h_{l} \in \mathbb{R}, h_{l} \rightarrow 0$, then

$$
\Delta_{i}^{h_{l}} \phi \rightarrow D_{i} \phi, \quad \text { in } X \text { as } l \rightarrow \infty,
$$

in X, where $\Delta_{i}^{h} \phi:=h^{-1}\left[\tau_{-h e_{i}} \phi-\phi\right]$ is the difference quotient.
Exercise 3. Suppose $u \in \mathscr{D}^{\prime}(\mathbb{R})$ satisfies $D u=0$. Show that u is a constant distribution, i.e. there exists $\lambda \in \mathbb{C}$ such that:

$$
u[\phi]=\lambda \int_{\mathbb{R}} \phi(x) d x, \quad \text { for all } \phi \in \mathscr{D}(\mathbb{R}) .
$$

(*) Extend the result to \mathbb{R}^{n} for $n>1$.
[Hint: Fix $\phi_{0} \in \mathscr{D}(\mathbb{R})$ and show that any $\phi \in \mathscr{D}(\mathbb{R})$ may be written as $\phi(x)=\psi^{\prime}(x)+c_{\phi} \phi_{0}(x)$ for some $\left.\psi \in \mathscr{D}(\mathbb{R}), c_{\phi} \in \mathbb{C}.\right]$

Exercise 4. Let $X \in\left\{\mathscr{D}\left(\mathbb{R}^{n}\right), \mathcal{S}\left(\mathbb{R}^{n}\right), \mathscr{E}\left(\mathbb{R}^{n}\right)\right\}$. For $u \in X^{\prime}, x \in \mathbb{R}^{n}$, define $\tau_{x} u$ by $\tau_{x} u[\phi]=u\left[\tau_{-x} \phi\right]$ for all $\phi \in X$, and let $\Delta_{i}^{h} u=h^{-1}\left[\tau_{-h e_{i}} u-u\right]$. Show that $\Delta_{i}^{h} u \rightarrow D_{i} u$ as $h \rightarrow 0$ in the weak $-*$ topology of X^{\prime}.

Exercise 5. Suppose $u \in \mathscr{D}^{\prime}(\mathbb{R})$ satisfies $x u=0$. Show that $u=c \delta_{0}$ for some $c \in \mathbb{C}$. Find the most general $u \in \mathscr{D}^{\prime}(\mathbb{R})$ which satisfies $x^{k} u=0$ for some $k \in \mathbb{N}$.

Exercise 6. Suppose $u: \delta\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is a linear map. Show that u is continuous if and only if there exist $N, k \in \mathbb{N}$ and $C>0$ such that:

$$
|u[\phi]| \leqslant C \sup _{x \in \mathbb{R}^{n} ;|\alpha| \leqslant k}\left|(1+|x|)^{N} D^{\alpha} \phi(x)\right|, \quad \text { for all } \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
$$

Exercise 7. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=e^{x} \cos \left(e^{x}\right)$. Determine whether the corresponding distribution belongs to $\mathscr{D}^{\prime}(\mathbb{R}), \mathcal{S}^{\prime}(\mathbb{R}), \mathscr{C}^{\prime}(\mathbb{R})$, respectively.

Exercise 8. Suppose $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is positive, i.e. $u[\phi] \geq 0$ for all $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ with $\phi \geq 0$. Show that u has order 0 , i.e., for each $K \subset \mathbb{R}^{n}$ compact, there is a constant C such that

$$
|u[\phi]| \leq C \sup _{x \in K}|\phi(x)|, \quad \text { for all } \phi \in C_{c}^{\infty}(K) .
$$

Exercise 9. Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$, with supp $f \subset B_{R}(0)$ for some $R>0$. Show that $\hat{f} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and for any multi-index:

$$
\sup _{\xi \in \mathbb{R}^{n}}\left|D^{\alpha} \hat{f}(\xi)\right| \leqslant R^{|\alpha|}\|f\|_{L^{1}}
$$

Exercise 10. Recall that $L^{\infty}(\mathbb{R})=L^{1}(\mathbb{R})^{\prime}$. Consider the sequence $\left(f_{n}\right)_{n=1}^{\infty}$, where $f_{n} \in L^{\infty}(\mathbb{R})$ is given by $f_{n}(x)=\sin (n x)$. Show that $f_{n} \stackrel{*}{\longrightarrow} 0$. Show that $f_{n}^{2} \stackrel{*}{\longrightarrow} g$ for some $g \in L^{\infty}(\mathbb{R})$ which you should find.

Exercise 11. Suppose $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. By observing that

$$
\|f\|_{L^{2}}^{2}=\int_{\mathbb{R}^{n}} \frac{1}{n}(\operatorname{div} x)|f(x)|^{2} d x
$$

or otherwise, show that:

$$
(2 \pi)^{\frac{n}{2}}\|f\|_{L^{2}}^{2} \leqslant \frac{2}{n}\||x| f(x)\|_{L^{2}}\||\xi| \hat{f}(\xi)\|_{L^{2}}
$$

with equality if and only if $f(x)=a e^{-\lambda|x|^{2}}$ for some $a \in \mathbb{C}, \lambda>0$. Deduce that if $x_{0}, \xi_{0} \in \mathbb{R}^{n}$:

$$
(2 \pi)^{\frac{n}{2}}\|f\|_{L^{2}}^{2} \leqslant \frac{2}{n}\left\|\left|x-x_{0}\right| f(x)\right\|_{L^{2}}\left\|\left|\xi-\xi_{0}\right| \hat{f}(\xi)\right\|_{L^{2}}
$$

Explain how this shows that a function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ cannot be sharply localised in both physical and Fourier space simultaneously. This is the uncertainty principle.

Exercise 12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the sign function

$$
f(x)= \begin{cases}-1 & x<0 \\ 1 & x \geqslant 0\end{cases}
$$

and define $f_{R}(x)=f(x) \mathbb{1}_{[-R, R]}(x)$.
a) Sketch $f_{R}(x)$, and show that $T_{f_{R}} \rightarrow T_{f}$ in $\mathcal{S}^{\prime}(\mathbb{R})$ as $R \rightarrow \infty$.
b) Compute $\hat{f}_{R}(\xi)$, and show that for $\phi \in \mathcal{S}(\mathbb{R})$:

$$
T_{\hat{f}_{R}}[\phi]=-2 i \int_{0}^{\infty} \frac{\phi(x)-\phi(-x)}{x} d x+2 i \int_{0}^{\infty}\left(\frac{\phi(x)-\phi(-x)}{x}\right) \cos R x d x
$$

Deduce $\widehat{T_{f}}=-2 i P . V .\left(\frac{1}{x}\right)$, where we define the distribution P.V. $\left(\frac{1}{x}\right)$ by:

$$
\text { P.V. }\left(\frac{1}{x}\right)[\phi]=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R} \backslash(-\epsilon, \epsilon)} \frac{\phi(x)}{x} d x, \quad \phi \in \mathcal{S}(\mathbb{R})
$$

c) Write down $\widehat{T_{H}}$, where H is the Heaviside function:

$$
H(x)= \begin{cases}0 & x<0 \\ 1 & x \geqslant 0\end{cases}
$$

By considering $e^{-\epsilon x} H(x)$, or otherwise, find an expression for the distribution u which acts on $\phi \in \mathcal{S}(\mathbb{R})$ by:

$$
u[\phi]:=\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}} \frac{\phi(x)}{x+i \epsilon} d x
$$

Exercise 13. Suppose $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. For each $y \in \mathbb{R}^{m}$ let $\phi_{y}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be given by $\phi_{y}(x)=\phi(x, y)$. Let $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
a) Show that $\psi: y \mapsto u\left[\phi_{y}\right]$ is smooth and find an expression for $D^{\alpha} \psi$. Deduce that

$$
\int_{\mathbb{R}^{m}} \psi(y) d y=u[\Psi], \quad \text { where } \quad \Psi(x)=\int_{\mathbb{R}^{m}} \phi(x, y) d y .
$$

b) Show that there exists a sequence of smooth functions $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $T_{f_{n}} \rightarrow u$ in the weak-* topology of $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

