Exercise 1. Suppose $f, g: E \rightarrow \mathbb{C}$ are measurable functions on some measure space (E, \mathcal{E}, μ). Show that:
a) $\|f g\|_{L^{r}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}}$ where $1 \leqslant p, q, r \leqslant \infty$ satisfy $p^{-1}+q^{-1}=r^{-1}$
[You may wish to first establish the special case $r=1$.]
b) $\|f+g\|_{L^{p}} \leqslant\|f\|_{L^{p}}+\|g\|_{L^{p}}$ for $1 \leqslant p \leqslant \infty$.

Exercise 2. a) Suppose that $\mu(E)<\infty$. Show that if $f \in L^{p}(E, \mu)$, then $f \in L^{q}(E, \mu)$ for any $1 \leqslant q \leqslant p$, with

$$
\|f\|_{L^{q}} \leqslant \mu(E)^{\frac{p-q}{q P}}\|f\|_{L^{p}}
$$

b) Suppose that $f \in L^{p_{0}}(E, \mu) \cap L^{p_{1}}(E, \mu)$ with $p_{0}<p_{1} \leqslant \infty$. For $0 \leqslant \theta \leqslant 1$, define p_{θ} by

$$
\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} .
$$

Show that $f \in L^{p_{\theta}}(E, \mu)$ with

$$
\|f\|_{L^{p_{\theta}}} \leqslant\|f\|_{L^{p_{0}}}^{1-\theta}\|f\|_{L^{p_{1}}}^{\theta} .
$$

c) Show that for $p_{1} \neq p_{2}$ we have $L^{p_{1}}\left(\mathbb{R}^{n}\right) \not \subset L^{p_{2}}\left(\mathbb{R}^{n}\right)$. For which p_{1}, p_{2} do we have $L_{\text {loc. }}^{p_{1}}\left(\mathbb{R}^{n}\right) \subset$ $L_{\text {loc. }}^{p_{2}}\left(\mathbb{R}^{n}\right)$?

Exercise 3. Let $\mathcal{R}_{\mathbb{Q}}$ be the set of rectangles of the form $\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right]$ with $a_{i}, b_{i} \in \mathbb{Q}$, and let S_{Q} be the set of functions of the form

$$
s(x)=\sum_{k=1}^{N}\left(\alpha_{k}+i \beta_{k}\right) \mathbb{1}_{R_{k}}
$$

for $R_{k} \in \mathcal{R}_{\mathbb{Q}}$ and $\alpha_{k}, \beta_{k} \in \mathbb{Q}$. For $1 \leqslant p<\infty$ show that $S_{\mathbb{Q}}$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$ and deduce that $L^{p}\left(\mathbb{R}^{n}\right)$ is separable. Show that $L^{\infty}\left(\mathbb{R}^{n}\right)$ is not separable.
[Hint: for the last part exhibit an uncountable subset $X \subset L^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\|f-g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \geqslant 1$ for any $f, g \in X, f \neq g]$.

Exercise 4. a) Suppose $1 \leqslant p \leqslant \infty$ and let q satisfy $p^{-1}+q^{-1}=1$. Show that for a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$:

$$
\|f\|_{L^{p}}=\sup \left\{\int_{\mathbb{R}^{n}}|f(x) g(x)| d x: g \in L^{q}\left(\mathbb{R}^{n}\right),\|g\|_{L^{q}} \leqslant 1\right\} .
$$

b) Now suppose $p<\infty$ and assume $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is integrable. Set $G(y)=\int_{\mathbb{R}^{n}} F(x, y) d x$. Show that if $\|g\|_{L^{q}} \leqslant 1$ then

$$
\int_{\mathbb{R}^{n}}|G(y) g(y)| d y \leqslant \int_{\mathbb{R}^{n}}\left[\int_{\mathbb{R}^{n}}|F(x, y)|^{p} d y\right]^{\frac{1}{p}} d x
$$

Deduce Minkowski's integral inequality

$$
\left[\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} F(x, y) d x\right|^{p} d y\right]^{\frac{1}{p}} \leqslant \int_{\mathbb{R}^{n}}\left[\int_{\mathbb{R}^{n}}|F(x, y)|^{p} d y\right]^{\frac{1}{p}} d x
$$

Exercise 5. Let $I=(0,1)$ and $1 \leq p<\infty$. Exhibit a sequence $\left(f_{j}\right)_{j=1}^{\infty}$ with $f_{j} \in L^{p}(I)$ such that $f_{j} \rightarrow 0$ in $L^{p}(I)$, but $f_{j}(x)$ does not converge for any x. Does such a sequence exist if $p=\infty$?

Exercise 6. Suppose $1 \leqslant p<\infty$.
a) Suppose $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Show that

$$
|\{x:|f(x)|>\lambda\}| \leqslant \frac{\|f\|_{L^{p}}^{p}}{\lambda^{p}}
$$

This is known as Tchebychev's inequality, the $p=1$ case is Markov's inequality.
b) We say that a measurable $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is in weak- $L^{p}\left(\mathbb{R}^{n}\right)$, written $f \in L^{p, w}\left(\mathbb{R}^{n}\right)$ if there exists a constant C such that

$$
|\{x:|f(x)|>\lambda\}| \leqslant \frac{C^{p}}{\lambda^{p}}
$$

Show that $L^{p}\left(\mathbb{R}^{n}\right) \subset L^{p, w}\left(\mathbb{R}^{n}\right)$, and that the inclusion is proper.
Exercise 7. Suppose that $f \in L^{r}\left(\mathbb{R}^{n}\right)$ for some $1 \leqslant r<\infty$. Show that $\|f\|_{L^{\infty}}=\lim _{p \rightarrow \infty}\|f\|_{L^{p}}$.
[Hint: you may find the estimates in Exercises 2 b), 6a) useful.]
Exercise 8. a) Let B_{1}, \ldots, B_{N} be a finite collection of open balls in \mathbb{R}^{n}. Show that there exists a subcollection $B_{i_{1}}, \ldots, B_{i_{k}}$ of disjoint balls such that

$$
\bigcup_{i=1}^{N} B_{i} \subset \bigcup_{j=1}^{k}\left(3 B_{i_{j}}\right)
$$

where $3 B$ is the ball with the same centre as B but three times the radius. Deduce

$$
\left|\bigcup_{i=1}^{N} B_{i}\right| \leqslant 3^{n} \sum_{j=1}^{k}\left|B_{i_{j}}\right| .
$$

b) (*) Suppose $\left\{B_{j}: j \in J\right\}$ is an arbitrary collection of balls in \mathbb{R}^{n} such that each ball has radius at most R. Show that there exists a countable subcollection $\left\{B_{j}: j \in J^{\prime}\right\}, J^{\prime} \subset J$ of disjoint balls such that

$$
\bigcup_{i \in J} B_{i} \subset \bigcup_{i \in J^{\prime}}\left(5 B_{i}\right)
$$

These are Wiener and Vitali's covering Lemmas, respectively.
Exercise 9. Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ is integrable and let $F(x)=\int_{-\infty}^{x} f(t) d t$. Show that F is differentiable with $F^{\prime}(x)=f(x)$ at each Lebesgue point $x \in \mathbb{R}$. Deduce that F is differentiable almost everywhere.
Exercise 10. Suppose $\phi \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies $\phi \geqslant 0$, $\operatorname{supp} \phi \subset B_{1}(0)$, and $\int_{\mathbb{R}^{n}} \phi d x=1$. Set $\phi_{\epsilon}(x)=$ $\epsilon^{-n} \phi\left(\epsilon^{-1} x\right)$. Show that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, and x is a Lebesgue point of f,

$$
\phi_{\epsilon} \star f(x) \rightarrow f(x), \quad \text { as } \epsilon \rightarrow 0
$$

Exercise 11. Let $S=\left\{\psi_{n, k}\right\}_{n, k \in \mathbb{Z}}$ be the Haar system, as defined in lectures.
a) Show that

$$
\int_{\mathbb{R}} \psi_{n_{1}, k_{1}}(x) \psi_{n_{2}, k_{2}}(x) d x=\delta_{n_{1} n_{2}} \delta_{k_{1} k_{2}}
$$

b) Show that $\mathbb{1}_{I} \in \overline{\operatorname{Span} S}$ for any finite interval I, where the closure is understood with respect to the L^{2} norm.
c) Deduce that S is an orthonormal basis for $L^{2}(\mathbb{R})$.

Exercise 12. (*) Suppose (E, \mathcal{E}) is a measurable space, with finite measures μ, v. Show that v may be uniquely written as $v=v_{a}+v_{s}$, for measures v_{a}, v_{s} such that $v_{s} \perp \mu$ and $v_{a} \ll \mu$.
[Hint: Return to the proof of the Radon-Nikodym theorem, but drop the assumption that $v \ll \mu$]

