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Exercise 1. Suppose 𝑓 , 𝑔 : 𝐸 → C are measurable functions on some measure space (𝐸, E, 𝜇). Show
that:

a) ‖ 𝑓 𝑔‖𝐿𝑟 6 ‖ 𝑓 ‖𝐿𝑝 ‖𝑔‖𝐿𝑞 where 1 6 𝑝, 𝑞, 𝑟 6 ∞ satisfy 𝑝−1 + 𝑞−1 = 𝑟−1

[You may wish to first establish the special case 𝑟 = 1.]

b) ‖ 𝑓 + 𝑔‖𝐿𝑝 6 ‖ 𝑓 ‖𝐿𝑝 + ‖𝑔‖𝐿𝑝 for 1 6 𝑝 6 ∞.

Exercise 2. a) Suppose that 𝜇(𝐸) < ∞. Show that if 𝑓 ∈ 𝐿 𝑝 (𝐸, 𝜇), then 𝑓 ∈ 𝐿𝑞 (𝐸, 𝜇) for any 1 6 𝑞 6 𝑝,
with

‖ 𝑓 ‖𝐿𝑞 6 𝜇(𝐸)
𝑝−𝑞
𝑞𝑝 ‖ 𝑓 ‖𝐿𝑝 .

b) Suppose that 𝑓 ∈ 𝐿 𝑝0 (𝐸, 𝜇) ∩ 𝐿 𝑝1 (𝐸, 𝜇) with 𝑝0 < 𝑝1 6 ∞. For 0 6 𝜃 6 1, define 𝑝𝜃 by

1
𝑝𝜃

=
1 − 𝜃

𝑝0
+ 𝜃

𝑝1
.

Show that 𝑓 ∈ 𝐿 𝑝𝜃 (𝐸, 𝜇) with
‖ 𝑓 ‖𝐿𝑝𝜃 6 ‖ 𝑓 ‖1−𝜃

𝐿𝑝0 ‖ 𝑓 ‖ 𝜃𝐿𝑝1 .

c) Show that for 𝑝1 ≠ 𝑝2 we have 𝐿 𝑝1 (R𝑛) ⊄ 𝐿 𝑝2 (R𝑛). For which 𝑝1, 𝑝2 do we have 𝐿
𝑝1
𝑙𝑜𝑐.

(R𝑛) ⊂
𝐿
𝑝2
𝑙𝑜𝑐.

(R𝑛)?

Exercise 3. Let RQ be the set of rectangles of the form (𝑎1, 𝑏1] × · · · × (𝑎𝑛, 𝑏𝑛] with 𝑎𝑖 , 𝑏𝑖 ∈ Q, and let
𝑆Q be the set of functions of the form

𝑠(𝑥) =
𝑁∑︁
𝑘=1

(𝛼𝑘 + 𝑖𝛽𝑘)1𝑅𝑘

for 𝑅𝑘 ∈ RQ and 𝛼𝑘 , 𝛽𝑘 ∈ Q. For 1 6 𝑝 < ∞ show that 𝑆Q is dense in 𝐿 𝑝 (R𝑛) and deduce that 𝐿 𝑝 (R𝑛) is
separable. Show that 𝐿∞(R𝑛) is not separable.
[Hint: for the last part exhibit an uncountable subset 𝑋 ⊂ 𝐿∞(R𝑛) such that ‖ 𝑓 − 𝑔‖𝐿∞ (R𝑛) > 1 for any
𝑓 , 𝑔 ∈ 𝑋 , 𝑓 ≠ 𝑔] .

Exercise 4. a) Suppose 1 6 𝑝 6 ∞ and let 𝑞 satisfy 𝑝−1 + 𝑞−1 = 1. Show that for a measurable function
𝑓 : R𝑛 → C:

‖ 𝑓 ‖𝐿𝑝 = sup
{∫
R𝑛

| 𝑓 (𝑥)𝑔(𝑥) | 𝑑𝑥 : 𝑔 ∈ 𝐿𝑞 (R𝑛), ‖𝑔‖𝐿𝑞 6 1
}
.

b) Now suppose 𝑝 < ∞ and assume 𝐹 : R𝑛 × R𝑛 → C is integrable. Set 𝐺 (𝑦) =
∫
R𝑛

𝐹 (𝑥, 𝑦)𝑑𝑥. Show
that if ‖𝑔‖𝐿𝑞 6 1 then ∫

R𝑛
|𝐺 (𝑦)𝑔(𝑦) | 𝑑𝑦 6

∫
R𝑛

[∫
R𝑛

|𝐹 (𝑥, 𝑦) |𝑝 𝑑𝑦
] 1

𝑝

𝑑𝑥.

Deduce Minkowski’s integral inequality[∫
R𝑛

����∫
R𝑛

𝐹 (𝑥, 𝑦)𝑑𝑥
����𝑝 𝑑𝑦] 1

𝑝

6

∫
R𝑛

[∫
R𝑛

|𝐹 (𝑥, 𝑦) |𝑝 𝑑𝑦
] 1

𝑝

𝑑𝑥.

Exercise 5. Let 𝐼 = (0, 1) and 1 ≤ 𝑝 < ∞. Exhibit a sequence ( 𝑓 𝑗)∞𝑗=1 with 𝑓 𝑗 ∈ 𝐿 𝑝 (𝐼) such that 𝑓 𝑗 → 0
in 𝐿 𝑝 (𝐼), but 𝑓 𝑗 (𝑥) does not converge for any 𝑥. Does such a sequence exist if 𝑝 = ∞?
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Exercise 6. Suppose 1 6 𝑝 < ∞.

a) Suppose 𝑓 ∈ 𝐿 𝑝 (R𝑛). Show that

|{𝑥 : | 𝑓 (𝑥) | > 𝜆}| 6
‖ 𝑓 ‖ 𝑝

𝐿𝑝

𝜆𝑝
.

This is known as Tchebychev’s inequality, the 𝑝 = 1 case is Markov’s inequality.

b) We say that a measurable 𝑓 : R𝑛 → C is in weak-𝐿 𝑝 (R𝑛), written 𝑓 ∈ 𝐿 𝑝,𝑤 (R𝑛) if there exists a
constant 𝐶 such that

|{𝑥 : | 𝑓 (𝑥) | > 𝜆}| 6 𝐶 𝑝

𝜆𝑝
.

Show that 𝐿 𝑝 (R𝑛) ⊂ 𝐿 𝑝,𝑤 (R𝑛), and that the inclusion is proper.

Exercise 7. Suppose that 𝑓 ∈ 𝐿𝑟 (R𝑛) for some 1 6 𝑟 < ∞. Show that ‖ 𝑓 ‖𝐿∞ = lim𝑝→∞ ‖ 𝑓 ‖𝐿𝑝 .
[Hint: you may find the estimates in Exercises 2 b), 6 a) useful.]

Exercise 8. a) Let 𝐵1, . . . , 𝐵𝑁 be a finite collection of open balls in R𝑛. Show that there exists a
subcollection 𝐵𝑖1 , . . . , 𝐵𝑖𝑘 of disjoint balls such that

𝑁⋃
𝑖=1

𝐵𝑖 ⊂
𝑘⋃
𝑗=1

(3𝐵𝑖 𝑗 ),

where 3𝐵 is the ball with the same centre as 𝐵 but three times the radius. Deduce����� 𝑁⋃
𝑖=1

𝐵𝑖

����� 6 3𝑛
𝑘∑︁
𝑗=1

��𝐵𝑖 𝑗

�� .
b) (*) Suppose {𝐵 𝑗 : 𝑗 ∈ 𝐽} is an arbitrary collection of balls in R𝑛 such that each ball has radius at most

𝑅. Show that there exists a countable subcollection {𝐵 𝑗 : 𝑗 ∈ 𝐽 ′}, 𝐽 ′ ⊂ 𝐽 of disjoint balls such that⋃
𝑖∈𝐽

𝐵𝑖 ⊂
⋃
𝑖∈𝐽 ′

(5𝐵𝑖).

These are Wiener and Vitali’s covering Lemmas, respectively.

Exercise 9. Suppose 𝑓 : R → C is integrable and let 𝐹 (𝑥) =
∫ 𝑥

−∞ 𝑓 (𝑡)𝑑𝑡. Show that 𝐹 is differentiable
with 𝐹 ′(𝑥) = 𝑓 (𝑥) at each Lebesgue point 𝑥 ∈ R. Deduce that 𝐹 is differentiable almost everywhere.

Exercise 10. Suppose 𝜙 ∈ 𝐿∞(R𝑛) satisfies 𝜙 > 0, supp 𝜙 ⊂ 𝐵1(0), and
∫
R𝑛

𝜙 𝑑𝑥 = 1. Set 𝜙𝜖 (𝑥) =

𝜖−𝑛𝜙(𝜖−1𝑥). Show that if 𝑓 ∈ 𝐿1(R𝑛), and 𝑥 is a Lebesgue point of 𝑓 ,

𝜙𝜖 ★ 𝑓 (𝑥) → 𝑓 (𝑥), as 𝜖 → 0.

Exercise 11. Let 𝑆 = {𝜓𝑛,𝑘 }𝑛,𝑘∈Z be the Haar system, as defined in lectures.

a) Show that ∫
R
𝜓𝑛1,𝑘1 (𝑥)𝜓𝑛2,𝑘2 (𝑥)𝑑𝑥 = 𝛿𝑛1𝑛2𝛿𝑘1𝑘2 .

b) Show that 1𝐼 ∈ Span 𝑆 for any finite interval 𝐼, where the closure is understood with respect to the 𝐿2

norm.

c) Deduce that 𝑆 is an orthonormal basis for 𝐿2(R).

Exercise 12. (*) Suppose (𝐸, E) is a measurable space, with finite measures 𝜇, 𝜈. Show that 𝜈 may be
uniquely written as 𝜈 = 𝜈𝑎 + 𝜈𝑠, for measures 𝜈𝑎, 𝜈𝑠 such that 𝜈𝑠 ⊥ 𝜇 and 𝜈𝑎 � 𝜇.
[Hint: Return to the proof of the Radon–Nikodym theorem, but drop the assumption that 𝜈 � 𝜇]
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