

Exercise 2.1. Let \mathcal{P} be a separating family of seminorms on a vector space X . Show that a sequence $(x_k)_{k=1}^{\infty}$ with $x_k \in X$ converges to $x \in X$ in the topology $\tau_{\mathcal{P}}$ if and only if $p(x_k - x) \rightarrow 0$ for all $p \in \mathcal{P}$.

Exercise 2.2. Suppose that X is a Banach space, and let $(\Lambda_k)_{k=1}^{\infty}$ be a sequence with $\Lambda_k \in X'$. Show that:

$$\Lambda_k \rightarrow \Lambda \implies \Lambda_k \rightharpoonup \Lambda \implies \Lambda_k \xrightarrow{*} \Lambda.$$

(*) Show the stronger statement that $\tau_{w*} \subset \tau_w \subset \tau_s$, where $\tau_{w*}, \tau_w, \tau_s$ are the weak-*, weak and strong topologies on X' respectively.

Exercise 2.3. For a bounded measurable set $E \subset \mathbb{R}^n$ of positive measure, and any $f \in L^1_{loc}(\mathbb{R}^n)$, define the mean of f on E to be:

$$\int_E f(x) dx = \frac{1}{|E|} \int_E f(x) dx.$$

Suppose $1 < p < \infty$ and let $(f_j)_{j=1}^{\infty}$ be a bounded sequence of functions $f_j \in L^p(\mathbb{R}^n)$. Show that $f_j \rightharpoonup f$ for some $f \in L^p(\mathbb{R}^n)$ if and only if

$$\int_E f_j(x) dx \rightarrow \int_E f(x) dx$$

for all bounded measurable sets $E \subset \mathbb{R}^n$ of positive measure.

Exercise 2.4. Suppose $(H, (\cdot, \cdot))$ is an infinite dimensional Hilbert space and let $(x_i)_{i=1}^{\infty}$ be a sequence with $x_i \in H$.

- i) Show that $x_i \rightharpoonup x$ if and only if $(y, x_i) \rightarrow (y, x)$ for all $y \in H$.
- ii) Show there exists a sequence such that $x_i \rightharpoonup 0$, but $x_i \not\rightarrow 0$.
- iii) Suppose $x_i \rightharpoonup x$. Show that

$$\|x\| \leq \liminf_{i \rightarrow \infty} \|x_i\|,$$

and $\|x_i\| \rightarrow \|x\|$ iff $x_i \rightarrow x$.

Exercise 2.5. Construct a bounded sequence $(f_i)_{i=1}^{\infty}$ of functions $f_i \in L^1(\mathbb{R})$ such that no subsequence is weakly convergent.

Exercise 2.6. Let X be a Banach space. Show, using the Hahn–Banach theorem, that X' separates points, i.e. for any $x, y \in X$, $x \neq y$ there exists $\Lambda \in X'$ with $\Lambda(x) \neq \Lambda(y)$.

Exercise 2.7. let X be a reflexive Banach space, and suppose $Y \subset X$ is a closed subspace. Show that Y is reflexive.

Exercise 2.8. (*) Suppose X is a *separable* real Banach space. Prove the Hahn–Banach theorem on X *without* invoking the axiom of choice through Zorn’s Lemma (or equivalent).

Exercise 2.9. a) Show that \mathcal{S} is a vector subspace of $\mathcal{E}(\mathbb{R}^n)$. Show that if $\{\phi_j\}_{j=1}^\infty$ is a sequence of rapidly decreasing functions which tends to zero in \mathcal{S} , then $\phi_j \rightarrow 0$ in $\mathcal{E}(\mathbb{R}^n)$.

b) Show that $\mathcal{D}(\mathbb{R}^n)$ is a vector subspace of \mathcal{S} . Show that if $\{\phi_j\}_{j=1}^\infty$ is a sequence of compactly supported functions which tends to zero in $\mathcal{D}(\mathbb{R}^n)$ then $\phi_j \rightarrow 0$ in \mathcal{S} .

c) Give an example of a sequence $\{\phi_j\}_{j=1}^\infty \subset C_c^\infty(\mathbb{R}^n)$ such that

- i) $\phi_j \rightarrow 0$ in \mathcal{S} , but ϕ_j has no limit in $\mathcal{D}(\mathbb{R}^n)$.
- ii) $\phi_j \rightarrow 0$ in $\mathcal{E}(\mathbb{R}^n)$, but ϕ_j has no limit in \mathcal{S} .

Exercise 2.10. For each $X \in \{\mathcal{D}(\mathbb{R}^n), \mathcal{S}, \mathcal{E}(\mathbb{R}^n)\}$, suppose $\phi \in X$ and establish:

a) If $x_l \in \mathbb{R}^n$, $x_l \rightarrow 0$, then

$$\tau_{x_l}\phi \rightarrow \phi, \quad \text{in } X \text{ as } l \rightarrow \infty,$$

where τ_x is the translation operator defined by $\tau_x\phi(y) := \phi(y - x)$.

b) If $h_l \in \mathbb{R}$, $h_l \rightarrow 0$, then

$$\Delta_i^{h_l}\phi \rightarrow D_i\phi, \quad \text{in } X \text{ as } l \rightarrow \infty,$$

in X , where $\Delta_i^h\phi := h^{-1}[\tau_{-he_i}\phi - \phi]$ is the difference quotient.

Exercise 2.11. Suppose $u \in \mathcal{D}'(\mathbb{R})$ satisfies $Du = 0$. Show that u is a constant distribution, i.e. there exists $\lambda \in \mathbb{C}$ such that:

$$u[\phi] = \lambda \int_{\mathbb{R}} \phi(x) dx, \quad \text{for all } \phi \in \mathcal{D}(\mathbb{R}).$$

(*) Extend the result to \mathbb{R}^n for $n > 1$.

[Hint: Fix $\phi_0 \in \mathcal{D}(\mathbb{R})$ and show that any $\phi \in \mathcal{D}(\mathbb{R})$ may be written as $\phi(x) = \psi'(x) + c_\phi\phi_0(x)$ for some $\psi \in \mathcal{D}(\mathbb{R})$, $c_\phi \in \mathbb{C}$.]

Exercise 2.12. Let $X \in \{\mathcal{D}(\mathbb{R}^n), \mathcal{S}, \mathcal{E}(\mathbb{R}^n)\}$. For $u \in X'$, $x \in \mathbb{R}^n$, define $\tau_x u$ by $\tau_x u[\phi] = u[\tau_{-x}\phi]$ for all $\phi \in X$, and let $\Delta_i^h u = h^{-1}[\tau_{-he_i}u - u]$. Show that $\Delta_i^h u \rightarrow D_i u$ as $h \rightarrow 0$ in the weak-* topology of X' .

Exercise 2.13. Suppose $u \in \mathcal{D}'(\mathbb{R}^n)$. Show that there exists a sequence of smooth functions $f_n \in C_c^\infty(\mathbb{R}^n)$ such that $T_{f_n} \rightarrow u$ in the weak-* topology.