
ANALYSIS OF FUNCTIONS (PART II)

EXAMPLE SHEET 2

Harder questions are hightlighted with * and facultative “cultural” questions with %.
Focus first on questions 1 to 11 in priority for the supervision.

Exercise 1. Let E Banach space. Consider Fn sequence of E′ s.t. for any f ∈ E, the real sequence
Fn(f) converges, and prove that Fn converges weakly-* to some F ∈ E′ (i.e. in the topology σ(E′, E)).
Assume furthermore E reflexive and consider fn sequence of E s.t. for any F ∈ E′, the real sequence
F (fn) converges, and prove that fn converges weakly to some f ∈ E (i.e. in the topology σ(E,E′)).
Give an example of a non-reflexive Banach space where the latter does not hold.

Exercise 2. Let E Banach space.
(i) Consider A ⊂ E a subset that is weakly-compact (i.e. for σ(E,E′)). Prove that A is bounded.
(ii) Consider A ⊂ E convex, prove that its closure in the weak and strong topologies are the same.
(iii) Let E Banach space and fn a sequence in E that converges weakly (σ(E,E′)) to f , prove that
gn := (f1 + · · ·+ fn)/n converges weakly to f .
(iv) Prove that if fn converges weakly to f and {fn, n ≥ 1} is relatively compact for the strong
topology, then fn converges to f strongly.

Exercise 3. Let E Banach space, M subspace of E, M⊥ := {F ∈ E′ | F (f) = 0 ∀ f ∈ M}, and
F0 ∈ E′. Prove that there is G0 ∈M⊥ s.t. infG∈M⊥ ‖F0 −G‖E′ = ‖F0 −G0‖E′ .

*Exercise 4. Let E Banach space and fn sequence of E. Define Kn the closure of the convex hull
of {fn, fn+1, . . . } = ∪i≥n{fi}. Prove that if fn converges weakly to f (i.e. in the topology σ(E,E′))
then ∩n≥1Kn = {f}. Prove that if E is reflexive and the sequence fn is bounded the converse holds:
if ∩n≥1Kn = {f} then fn converges weakly to f .

Exercise 5. Exhibit a sequence fn ∈ Lp(R), p ∈ [1,+∞) s.t. ‖fn‖Lp = 1 for all n ≥ 1 and fn
converges weakly to zero. Prove more generally that if [E Banach space of infinite dimension and
reflexive] and/or [E Banach space of infinite dimension with E′ separable], then there exists such a
sequence.

Exercise 6. Prove that fn(x) = sin(nx) ∈ L2([0, 1]) converges weakly (give its limit) but not strongly
in L2([0, 1]). Prove that fn(x) = χ[n,n+1] converges weakly (give its limit) but not strongly in L2(R).

Find a sequence fn in L2(R)∩L3/2(R) that converges to 0 in L2(R) weakly, to 0 in L3/2(R) strongly,
but does not converge to 0 strongly in L2(R).

Exercise 7. Find a sequence of bounded non-negligible measurable sets in R whose characteristic
functions converge weakly in L2(R) to a non-zero function f with the property that 2f is a charac-
teristic function. How about the possibility that f/2 is a characteristic function?

Exercise 8. Consider fn a sequence bounded in Lp(I) with p ∈ (1,+∞] and I bounded open interval,
and s.t. fn → f almost everywhere. Prove that fn → f strongly in Lq(I) for any q ∈ [1, p).

Date: Lent 2017 – Feedbacks and comments welcome: C.Mouhot@dpmms.cam.ac.uk.

1



ANALYSIS OF FUNCTIONS (PART II) EXAMPLE SHEET 2 2

Exercise 9. Relations between p-norms.
(i) Given 1 ≤ p ≤ q ≤ +∞ and Ω ⊂ R open bounded, prove that Lq(Ω) ⊂ Lp(Ω) with ‖f‖Lq(Ω) ≥
C‖f‖Lp(Ω) for some constant C > 0.
(ii) Given 1 ≤ p ≤ q ≤ +∞, prove that `p(R) ⊂ `q(R) with ‖f‖`p(R) ≥ C‖f‖`q(R) for some C > 0.
(iii) Given 1 ≤ p ≤ r ≤ q ≤ +∞, prove that Lp(R) ∩ Lq(R) ⊂ Lr(R) and `p(R) ∩ `q(R) ⊂ `r(R).
*(iv) Given p, s ∈ [1,+∞), prove that Lp(R) ∩ BLs(R)(0, 1) is closed in Lp(R) and prove that if

fn ∈ Lp(R) ∩ BLs(R)(0, 1) converges strongly to f in Lp(R) then it converges strongly to f in Lr(R)
for r between p an s, r 6= s.

*Exercise 10. Given p ∈ (1, 2] prove that there is C > 0 s.t. |a − b|p ≤ C(|a|p + |b|p)1−p/2(|a|p +
|b|p − 2|(a+ b)/2|p)p/2 for all a, b ∈ R. Deduce that Lp(R) is uniformly convex for p ∈ (1, 2].

Exercise 11. Uniform convex spaces.
Let E Banach space and D : E → E′ the duality (multi-valued) map D(f) = {F ∈ E′ | F (f) =
‖f‖2E = ‖F‖2E}. Assume E uniformly convex.
(i) Prove that for any F ∈ E′ there is a unique f ∈ E s.t. F ∈ D(f) (inverse single-valued).
(ii) Prove that for any ε > 0 and α ∈ (0, 1/2) there is δ > 0 s.t. for all f, g ∈ BE(0, 1) with ‖f−g‖E ≥ ε
and t ∈ [α, 1− α] then ‖tf + (1− t)g‖E ≤ 1− δ.
*(iii) Prove that for C convex closed not empty the projection application PC(f) that realises infg∈C ‖f−
g‖E is well-defined and uniformly continuous on bounded sets of E.

*Exercise 12. Let E Banach space and A ⊂ E closed in σ(E,E′), B ⊂ E weakly compact (i.e. for
the topology σ(E,E′)). Prove that A + B is closed in σ(E,E′). Assume furthermore that A and B
are not empty, convex and disjoint, then they can be separated stricly by a closed hyperplan.

*Exercise 13. Construct a function in ∩1≤p<+∞L
p((0, 1)) that is not in L∞((0, 1)).

*Exercise 14. Let γ : R → R measurable s.t. γf ∈ Lp(R) whenever f ∈ Lq(R), 1 ≤ p ≤ q ≤ +∞.
Prove that γ ∈ Lr(R) with r = +∞ if p = q, r = pq/(q − p) if p < q < +∞, and r = p if q = +∞.

*Exercise 15. Consider a closed subspace S of L1(R) s.t.S ⊂ ∪1<q≤+∞L
q(R). Prove that there is

p ∈ (1,+∞] s.t. S ⊂ Lp(R) and a constant C > 0 s.t. ‖f‖Lp(R) ≤ C‖f‖L1(R) for all f ∈ S.

*Exercise 16. Let p ∈ [1,+∞) and E be a closed subspace of Lp([0, 1]) (for the strong topology) s.t.
E ⊂ L∞([0, 1]). Prove that E has finite dimension.

*Exercise 17. Prove that in `1(R) a sequence converges strongly iff it converges weakly (i.e. in
σ(`1, `∞). Is this statement true in L1(R)?

*Exercise 18. Consider fn a sequence in Lp(R) that converges weakly to f ∈ Lp(R). Prove that
there is a sequence gn :=

∑n
i=1 c

n
i fi for some cni ≥ 0 with

∑n
i=1 c

n
i = 1 (convex combination) s.t. gn

converges strongly to f in Lp(R). When p = 2 prove furthermore that after passing to a subsequence
the cni ’s can be taken to be cni = 1/n.

*Exercise 19. Prove that C0([0, 1]) the space of continuous functions on [0, 1] endowed with the
supremum norm is a Banach space that is not reflexive.
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%Exercise 20. Strictly convex spaces.
A Banach space E is said strictly convex is its unit ball is a strictly convex set.
(i) Give an example of a Banach space that is not strictly convex.
(ii) Prove that if E is uniformly convex, it is strictly convex.
(iii) Prove that the converse is wrong: consider `1(R) with the modified norm ‖f‖∗ = ‖f‖`1 + ‖f‖`2 ,
prove that this norm is equivalent to the `1 norm, is strictly convex but not uniformly convex.
*(iv) Assume E is separable and build an equivalent norm on E that is strictly convex and s.t. the
corresponding dual norm is also strictly convex in E′. [Note that if E not reflexive, these norms
cannot be uniformly convex.]

%Exercise 21. The Dunford-Pettis Theorem.
(i) A function g : [0, 1] → R has bounded variation (BV) if the supremum over any subdivision
0 = x0 ≤ x1 ≤ · · · ≤ xn = 1 of

∑n
i=1 |g(xi)− g(xi−1)| is finite. Prove that a BV function is the sum of

two monotonous functions and that it is differentiable almost everywhere with f ′ integrable on [0, 1].
Prove that a Lischitz function is BV. Give an example of a function that is not BV.
(ii) A function g : [0, 1] → R is absolutely continuous (AC) if for any ε > 0 there is δ > 0 so that for
any finite collection of pairwise disjoint subintervals (xi, yi), i = 1, . . . , n, with

∑n
i=1(yi−xi) ≤ δ, then∑n

i=1 |g(yi) − g(xi)| ≤ ε. Prove that an AC function is BV and uniformly continuous. Prove that if

f is AC, it is differentiable almost everywhere with g′ ∈ L1([0, 1]), and moreover g(y)− g(x) =
´ y
x
g′

for all x, y ∈ [0, 1].
(ii) Consider a sequence fn : [0, 1] → R bounded in L1(R) and uniformly integrable: for any ε > 0
there is δ > 0 s.t. for any measurable set A ⊂ [0, 1] with µ(A) < δ,

´
A
|fn| < ε for all n. Define

Fn(x) :=
´ x

0
fn. Prove that the sequence Fn is equicontinuous and equicontinuous on [0, 1], and has

a subsequence Fθ(n) that converges uniformly to some F and prove that this limit F is AC.

(iii) Prove that
´ 1

0
fθ(n)χI

n→∞−−−−→
´ 1

0
fχI for any interval I ⊂ [0, 1], where f := F ′ ∈ L1([0, 1]).

(iv) Deduce that
´ 1

0
fθ(n)χA

n→∞−−−−→
´ 1

0
fχA for any Borel set A ⊂ [0, 1].

(v) Deduce that
´ 1

0
fθ(n)s

n→∞−−−−→
´ 1

0
fs for any simple function s in L∞([0, 1]).

(vi) Deduce that fθ(n) converges to f in σ(L1, L∞).
(v) Extend this proof of the Dunford-Pettis Theorem to functions on R by assuming furthermore the
tightness of the sequence: for any ε > 0 there is M > 0 s.t.

´
R\[−M,M ]

|fn| < ε for all n.

%Exercise 22. No isomorphy between `p spaces.
(i) Given 1 ≤ p < q < +∞ and T : `q(R) → `p(R) linear continuous, prove that for any sequence
fn bounded in `p(R), the sequence T (fn) has a subsequence that converges strongly in `q(R) (Pitt’s
theorem of “automatic compactness”).
(ii) Is this statement true in Lp(R) / Lq(R) spaces?
(iii) Deduce from (i) that there is no linear map bijective continuous and with continuous inverse
between `p(R) and `q(R) for 1 ≤ p < q ≤ ∞.
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