
ANALYSIS OF FUNCTIONS (PART II)

EXAMPLE SHEET 1

Harder questions hightlighted with * and facultative “cultural” questions highlighted with %.

Exercise 1. Let A,B Borel sets of Rn with finite non-zero measure. Show the convolution χA ∗
χB(x) :=

´
Rn χA(y)χB(x − y) dy of their two characteristic functions is a continuous function and is

not the zero function. Deduce that A+B contains a ball.

Exercise 2. Let (Ak)k≥1 Borel sets of Rn s.t.
∑
k≥1 µ(Ak) < +∞ (where µ is the Lebesgue measure).

Prove that the set of points belonging to infinitely many Ak’s has zero measure.

Exercise 3. Consider a sequence of measurable functions fk : Rn → C. Prove that the set of points
where the sequence converges is measurable.

Exercise 4. Let f : Rn → [0,+∞] be a measurable function s.t.
´
Rn f(x) dx = 0. Prove that f is

zero almost everywhere.

Exercise 5. Let f ∈ L1(Rn). Assume that
´
Rn f(x)ϕ(x) dx = 0 for all smooth compactly supported

functions ϕ : Rn → R. Prove that ‖f‖L1(Rn) = 0 and f is zero almost everywhere.

Exercise 6. Let f ∈ L1(Rn). Prove that for any ε > 0 there is δ > 0 s.t.
´
E
|f |dx < ε as soon as

µ(E) < δ (where µ denotes the Lebesgue measure).

Exercise 7. Give a counter-example showing that the domination assumption is necessary in Lebesgue’s
dominated convergence Theorem.

*Exercise 8. Consider fn : Rn → R+ a sequence of measurable functions converging pointwise to f
on Rn, and s.t.

´
Rn fn dx ≤

´
Rn f dx < +∞. Prove that limn→∞

´
Rn |fn − f |dx = 0.

Exercise 9. Let f : R→ R+ measurable s.t.
´
R f dx < +∞. Calculate limn→∞

´
R n ln(1 + ( fn )α) dx

for α > 0.

*Exercise 10. Construct a sequence of continuous functions fn : [0, 1] → R+ that converges at no
point, and whose integral converges to zero.

Exercise 11. Consider f : R→ [0,+∞] measurable. Recall: Changing variables inside integrals can
be used from Probability & Measure without proof.

(1) Assume
´
R f dx < +∞, and define g(x) :=

∑k=+∞
k=−∞ f(x + k) ∈ [0,+∞]. Prove that g(x) is

finite for almost every x ∈ R.
(2) Assume f is periodic and has finite integral on any compact set. Prove that limn→∞

1
n2 f(nx) =

0 for almost every x ∈ R.
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Exercise 12. Approximation of the unit and convolution.

An approximation of the unit is a sequence of measurable functions ϕk : Rn → R+, k ≥ 1, with´
Rn ϕk(x) dx = 1 and support of ϕk included in B(0, εk) for all k ≥ 1, with 0 < εk → 0 as k →∞.

(1) Construct an example of such sequence. Can you assume furthermore that the ϕk are smooth?
(2) Prove that the translation operator is continuous in L1(Rn): for f ∈ L1(Rn) and τhf defined

by τhf(x) = f(x+ h), the convergence ‖τhf − f‖L1(Rn) → 0 as h→ 0 holds. [Hint: Argue by

density of simple functions in L1(Rn).]
(3) Deduce that if f ∈ L1(Rn), the sequence f∗ϕk is well-defined, belongs to L1(Rn) and converges

to f in L1(Rn).
(4) Give a new proof of the density of C∞c (Rn) in L1(Rn). [Hint: Truncate f and convolute with

a smooth approximation of the unit.]

Exercise 13. Let I = (0, 1), p ∈ [1,+∞), f ∈ Lp(R) where f = 0 outside I. Define fh(x) :=
1
2h

´ x+h
x−h f(y) dy for h > 0.

(1) Prove that fh is well-defined for all h > 0.
(2) Prove that fh is continuous.
(3) Prove that ‖fh‖Lp(R) ≤ ‖f‖Lp(R).
(4) Prove that ‖fh − f‖Lp(R) → 0 as h→ 0.

Exercise 14. Let E closed set of Rn. The aim is to construct a non-negative smooth function on Rn
s.t. f(x) = 0 iff x ∈ E.

(1) Construct ϕ : Rn → R+ smooth, positive on B(0, 1), that is zero outside B(0, 1) and s.t.´
Rn ϕ(x) dx = 1.

(2) Let ϕk(x) = 1
kk
ϕ(kx), k ≥ 1. Denote Vε = {x | dist(x,E) < ε}, where dist(x,E) = inf{|x −

y| | y ∈ E}. Let χk the characteristic function of Rn \ V2/k and fk := ϕk ∗ χk. Prove that fk
is smooth, fk ≡ 0 on V1/k, fk > 0 on Rn \ V3/k.

(3) Calculate a supremum bound on all partial derivatives of fk.
(4) Conclude by summing the fk’s.

*Exercise 15. Study of the convergence in measure.
Take a sequence of measurable functions fn : [0, 1] → C. The sequence converges in measure to f

if for any ε > 0, µ({x ∈ R | |f(x)− fn(x)| > ε}) goes to zero as n→∞.

(1) Prove that if fn converges almost everywhere to f on [0, 1], it converges in measure to f on
[0, 1]. Is the reciprocal statement true?

(2) Prove that if fn converges to f in Lp([0, 1]), p ∈ [1,+∞], then it converges in measure to f
on [0, 1]. Is the reciprocal statement true?

(3) Prove that if fn converges in measure to f , then there is a subsequence of fn converging
almost everywhere to f .

(4) Are the results (1) and (2) true on R instead of [0, 1]?

*Exercise 16. Study of the ergodic average.
Let p ∈ (1,+∞) and f ∈ Lp((0,+∞)), and denote T [f ](x) = 1

x

´ x
0
f(y) dy for x ∈ (0,+∞).

(1) Prove that the function T [f ] is well-defined on (0,+∞).
(2) Assume f continuous with compact support in (0,+∞).

(a) Give a differential equation expressing f in terms of T [f ].
(b) Prove ‖T [f ]‖Lp((0,+∞)) ≤ p

p−1‖f‖Lp((0,+∞)). [Hint: Assume first that f is non-negative,

and use integration by parts and (b). Relax then the assumption of non-negativity by
linearity.]

(3) Prove that if fn → f in Lp((0,+∞)), then T [fn](x) converges to T [f ](x) for all x ∈ (0,+∞).
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(4) Prove ‖T [f ]‖Lp((0,+∞)) ≤ p
p−1‖f‖Lp((0,+∞)) for all f ∈  Lp((0,+∞)) and compute the norm of

the linear map T : Lp((0,+∞))→ Lp((0,+∞)).
(5) Does T map L1((0,+∞)) into L1((0,+∞))?

%Exercise 17. A theorem due to Lebesgue on Riemann-integrable functions.

Recall from Riemann’s integrability theory : We consider f : [a, b] → R bounded. Let P = {a =
t0 < t1 < · · · < tn = b} be a partition of [a, b] and define `P :=

∑n
i=1miχ(ti−1,ti] and uP :=∑n

i=1Miχ(ti−1,ti], where mi := inf{f(x) : x ∈ [ti − 1, ti]} and Mi := sup{f(x) : x ∈ [ti − 1, ti]}.
Denote

´ b
a
`P = L(f,P) and

´ b
a
uP = U(f,P). Riemann-integrability of f holds when lower and upper

Darboux sums both converge to L(f) = U(f) when the mesh size of the partition goes to zero. This
limit does not depend on the choice of sequence of partitions, and is called the Riemann integral of f .

(1) Prove that if f : [a, b] → R bounded is Riemann-integrable, it is measurable and belongs to
L1([a, b]).

(2) Define H(x) := infδ>0 sup{f(y) : y ∈ [a, b] and |y−x| ≤ δ} and h(x) := supδ>0 inf{f(y) : y ∈
[a, b] and |y − x| ≤ δ}. Prove that h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b], and f is continuous
at x iff h(x) = H(x).

(3) Consider an increasing (i.e. adding more points at each step) sequence of partitions Pk with
mesh size less than 1/k, and denote u = infk uPk

= limk uPk
and ` = supk `Pk

= limk `Pk
.

Show that these functions are well-defined (including that the limits do exist), satisfy `(x) ≤
f(x) ≤ u(x) for all x ∈ [a, b], and prove that f Riemann-integrable iff u = ` = f almost
everywhere.

(4) Denote N = ∪Pk the set of all points defining the partitions (countable with measure zero).
Show that H(x) = u(x) and h(x) = `(x) on x ∈ [a, b] \N .

(5) Deduce that h and H are measurable and prove that f Riemann-integable iff it is continuous
almost everywhere.

(6) Compare with Lusin’s Theorem for measurable functions.

%Exercise 18. Arzéla’s dominated convergence Theorem for Riemann-integrable functions.

(1) Is the statement of Lebesgue’s dominated convergence Theorem correct for bounded functions
fn : [0, 1]→ R when “L1” is replaced by “Riemann-integrable”?

(2) Consider a nonincreasing sequence of continuous functions pn : [0, 1] → R (pn+1 ≤ pn) that
converges pointwise to zero, prove that the convergence is uniform.

(3) Consider fn : [0, 1] → R Riemann-integrable with |fn| ≤ 1 and converging pointwise to zero,
and define gn(x) := supm≥n |fm(x)|. Given ε > 0, construct hn continuous s.t. 0 ≤ hn ≤ gn

and L(gn) ≤
´ 1
0
hn+ ε

2n (the lower Darboux integral L(gn) is defined in the previous exercise).

(4) Define pn(x) = min{h1(x), . . . , hn(x)} and prove using (2) that
´ 1
0
pn goes to zero as n→∞.

(5) Prove that hn ≤ pn +
∑n−1
j=1 (gj − hj).

(6) Deduce that lim supn→∞
´ 1
0
hn ≤ ε.

(7) Deduce that lim supn→∞ L(gn) ≤ ε and finally lim supn→∞
´ 1
0
|f | ≤ ε.

(8) Prove the following theorem: Consider a sequence of bounded Riemann-integrable functions
fn : [0, 1] → R that converges pointwise to a bounded Riemann-integrable function f and

satisfies |fn| ≤ F with F bounded Riemann-integrable, then the Riemann integral
´ 1
0
fn →

´ 1
0
f

as n→∞.
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