Example Sheet 4

- 1. For each of the following exact sequences of abelian groups and homomorphisms say as much as possible about the unknown group G and homomorphism α .
 - (a) $0 \longrightarrow \mathbb{Z}/2 \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 0$,
 - (b) $0 \longrightarrow \mathbb{Z} \longrightarrow G \longrightarrow \mathbb{Z}/2 \longrightarrow 0$.
 - (c) $0 \longrightarrow G \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0$,
 - (d) $0 \longrightarrow \mathbb{Z}/3 \longrightarrow G \longrightarrow \mathbb{Z}/2 \longrightarrow \mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \longrightarrow 0$.
- 2. Consider a commutative diagram

$$A_{5} \xrightarrow{f_{5}} A_{4} \xrightarrow{f_{4}} A_{3} \xrightarrow{f_{3}} A_{2} \xrightarrow{f_{2}} A_{1}$$

$$\downarrow h_{5} \qquad \downarrow h_{4} \qquad \downarrow h_{3} \qquad \downarrow h_{2} \qquad \downarrow h_{1}$$

$$B_{5} \xrightarrow{g_{5}} B_{4} \xrightarrow{g_{4}} B_{3} \xrightarrow{g_{3}} B_{2} \xrightarrow{g_{2}} B_{1}$$

in which the rows are exact and each square commutes. If h_1, h_2, h_4 , and h_5 are isomorphisms, show that h_3 is also an isomorphism.

- 3. Use the Mayer-Vietoris sequence to compute $H_*(Y)$ when
 - (a) Y is obtained by deleting the interiors of r distinct n-simplices from a triangulation of S^n .
 - (b) $Y = X/\sim$, where X is the disjoint union of two copies of T^2 , and \sim is the minimal equivalence relation for which $(1,\theta)$ in the first copy of T^2 is identified with $(\theta,1)$ in the second copy of T^2 .
 - (c) $Y = A \cup B$, where

$$A = \{(x_1, x_2, x_3, x_4, 0, 0) \in \mathbb{R}^6 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

$$B = \{(x_1, x_2, 0, 0, x_3, x_4) \in \mathbb{R}^6 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}.$$

You may assume that A and B can be triangulated so that $A \cap B$ is a subcomplex of both A and B.

- 4. Let $p:\widehat{X}\to X$ be a finite-sheeted covering space, and $h:|K|\to X$ a triangulation. Show that there is an $r\geq 1$ and triangulation $g:|L|\to \widehat{X}$ so that the composition $h^{-1}\circ p\circ g:|L|\to |K^{(r)}|$ is a simplicial map. If p has n sheets, show that $\chi(\widehat{X})=n\cdot \chi(X)$. Hence show that Σ_g is a covering space of Σ_h if and only if $\frac{1-g}{1-h}$ is an integer.
- 5. Let $\alpha: S^n \to S^n$ be the antipodal map. Compute the Lefschetz number $L(\alpha)$. When is α homotopic to the identity?
- 6. Let $p: S^{2k} \to X$ be a covering map, $G = \pi_1(X, x_0)$, and recall that G acts freely on S^{2k} via deck transformations. Show that, for any $g \in G$ with $g \neq 1$, the map $g_*: H_{2k}(S^{2k}) \to H_{2k}(S^{2k})$ is multiplication by -1. Deduce that G is either trivial or $\mathbb{Z}/2$, and that \mathbb{RP}^{2k} is not a proper covering space of any other space.
- 7. Let $f: K \to K$ be a simplicial isomorphism, and let $X \subset |K|$ be the fixed-point set of |f| (i.e. $\{x \in |K| \mid |f|(x) = x\}$). Show that the Lefschetz number L(f) is equal to $\chi(X)$.

[Hint: Show that X = |L|, where L is subcomplex of $K^{(r)}$.]

- 8. Suppose K is a simplicial complex and that v is a vertex of K. Fix a generator x of $H_1(S^1)$. Show that the map $\Omega_1(|K|,v) \to H_1(|K|)$ given by $\gamma \mapsto \overline{\gamma}_*(x)$ descends to a homomorphism $H: \pi_1(|K|,v) \to H_1(|K|)$. * If |K| is path connected, show that H is surjective. Deduce that the abelianization $\pi_1(|K|,v)^{\rm ab}$ surjects onto $H_1(|K|)$.
- 9. Let A be a 2×2 matrix with entries in \mathbb{Z} . Show that the linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves the equivalence relation $(a,b) \sim (a',b') \iff (a-a',b-b') \in \mathbb{Z}^2$, and so induces a continuous map $f_A : T^2 \to T^2$. Compute $(f_A)_* : H_1(T^2) \to H_1(T^2)$. [You may find it helpful to use problem 8.]
- 10. * By considering the action of A_5 on the icosahedron, construct a space P with a degree 60 covering map $p: SO(3) \to P$. Show that P is a compact 3-manifold; *i.e.* it is compact, Hausdorff, and every point has an open neighborhood homeomorphic to \mathbb{R}^3 . Using ES 1 Q 14, show that $G = \pi_1(P)$ is a group of order 120. Is $G \cong S_5$? Show that $G^{ab} = 1$, and deduce using Q 8 that $H_1(P) = 0$.

Taking as given that P admits a triangulation of dimension 3 in which every 2-dimensional simplex is the face of exactly two 3-dimensional simplices, show that $H_3(P) = \mathbb{Z}$ and $b_2(P) = 0$, so $H_*(P; \mathbb{Q}) \cong H_*(S^3; \mathbb{Q})$. (In fact if M is a compact orientable n-manifold, $H_{n-1}(M)$ is torsion free, so $H_*(P) \cong H_*(S^3)$.)

MICHAELMAS 2022 jar60@cam.ac.uk