Example Sheet 4

1. For each of the following exact sequences of abelian groups and homomorphisms say as much as possible about the unknown group G and homomorphism α.
(a) $0 \longrightarrow \mathbb{Z} / 2 \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 0$,
(b) $0 \longrightarrow \mathbb{Z} \longrightarrow G \longrightarrow \mathbb{Z} / 2 \longrightarrow 0$,
(c) $0 \longrightarrow G \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \longrightarrow 0$,
(d) $0 \longrightarrow \mathbb{Z} / 3 \longrightarrow G \longrightarrow \mathbb{Z} / 2 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow 0$.
2. Consider a commutative diagram

in which the rows are exact and each square commutes. If h_{1}, h_{2}, h_{4}, and h_{5} are isomorphisms, show that h_{3} is also an isomorphism.
3. Use the Mayer-Vietoris sequence to compute $H_{*}(Y)$ when
(a) Y is obtained by deleting the interiors of r distinct n-simplices from a triangulation of S^{n}.
(b) $Y=X / \sim$, where X is the disjoint union of two copies of T^{2}, and \sim is the minimal equivalence relation for which $(1, \theta)$ in the first copy of T^{2} is identified with $(\theta, 1)$ in the second copy of T^{2}.
(c) $Y=A \cup B$, where

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, 0,0\right) \in \mathbb{R}^{6} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\} \\
& B=\left\{\left(x_{1}, x_{2}, 0,0, x_{3}, x_{4}\right) \in \mathbb{R}^{6} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
\end{aligned}
$$

You may assume that A and B can be triangulated so that $A \cap B$ is a subcomplex of both A and B.
4. Let $p: \widehat{X} \rightarrow X$ be a finite-sheeted covering space, and $h:|K| \rightarrow X$ a triangulation. Show that there is an $r \geq 1$ and triangulation $g:|L| \rightarrow \widehat{X}$ so that the composition $h^{-1} \circ p \circ g:|L| \rightarrow\left|K^{(r)}\right|$ is a simplicial map. If p has n sheets, show that $\chi(\widehat{X})=n \cdot \chi(X)$. Hence show that Σ_{g} is a covering space of Σ_{h} if and only if $\frac{1-g}{1-h}$ is an integer.
5. Let $\alpha: S^{n} \rightarrow S^{n}$ be the antipodal map. Compute the Lefschetz number $L(\alpha)$. When is α homotopic to the identity?
6. Let $p: S^{2 k} \rightarrow X$ be a covering map, $G=\pi_{1}\left(X, x_{0}\right)$, and recall that G acts freely on $S^{2 k}$ via deck transformations. Show that, for any $g \in G$ with $g \neq 1$, the map $g_{*}: H_{2 k}\left(S^{2 k}\right) \rightarrow H_{2 k}\left(S^{2 k}\right)$ is multiplication by -1 . Deduce that G is either trivial or $\mathbb{Z} / 2$, and that $\mathbb{R} \mathbb{P}^{2 k}$ is not a proper covering space of any other space.
7. Let $f: K \rightarrow K$ be a simplicial isomorphism, and let $X \subset|K|$ be the fixed-point set of $|f|$ (i.e. $\{x \in|K|||f|(x)=x\}$). Show that the Lefschetz number $L(f)$ is equal to $\chi(X)$.
[Hint: Show that $X=|L|$, where L is subcomplex of $K^{(r)}$.]
8. Suppose K is a simplicial complex and that v is a vertex of K. Fix a generator x of $H_{1}\left(S^{1}\right)$. Show that the map $\Omega_{1}(|K|, v) \rightarrow H_{1}(|K|)$ given by $\gamma \mapsto \bar{\gamma}_{*}(x)$ descends to a homomorphism $H: \pi_{1}(|K|, v) \rightarrow H_{1}(|K|)$. ${ }^{*}$ If $|K|$ is path connected, show that H is surjective. Deduce that the abelianization $\pi_{1}(|K|, v)^{\text {ab }}$ surjects onto $H_{1}(|K|)$.
9. Let A be a 2×2 matrix with entries in \mathbb{Z}. Show that the linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ preserves the equivalence relation $(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a-a^{\prime}, b-b^{\prime}\right) \in \mathbb{Z}^{2}$, and so induces a continuous map $f_{A}: T^{2} \rightarrow T^{2}$. Compute $\left(f_{A}\right)_{*}: H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(T^{2}\right)$. [You may find it helpful to use problem 8.]
10. * By considering the action of A_{5} on the icosahedron, construct a space P with a degree 60 covering map $p: S O(3) \rightarrow P$. Show that P is a compact 3 -manifold; i.e. it is compact, Hausdorff, and every point has an open neighborhood homeomorphic to \mathbb{R}^{3}. Using ES 1 Q 14, show that $G=\pi_{1}(P)$ is a group of order 120. Is $G \cong S_{5}$? Show that $G^{a b}=1$, and deduce using Q 8 that $H_{1}(P)=0$.

Taking as given that P admits a triangulation of dimension 3 in which every 2-dimensional simplex is the face of exactly two 3-dimensional simplices, show that $H_{3}(P)=\mathbb{Z}$ and $b_{2}(P)=0$, so $H_{*}(P ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)$. (In fact if M is a compact orientable n-manifold, $H_{n-1}(M)$ is torsion free, so $\left.H_{*}(P) \cong H_{*}\left(S^{3}\right)\right)$.)

