Example Sheet 3

1. Show that there are triangulations of the torus, Klein bottle, and projective plane as follows:

How many vertices, edges and faces does each triangulation have? What is the number $\chi=$ vertices - edges + faces for each triangulation?
2. Let $K=\beta\left(\Delta^{n}\right)$ be the barycentric subdivision of the simplex Δ^{n}. Show that the set of vertices $V(K)$ is naturally in bijection with $F\left(\Delta^{n}\right) \backslash\left\{e_{\varnothing}\right\}$. Which subsets $F \subset F\left(\Delta^{n}\right)$ are the vertices of a simplex of K ?
3. Use the simplicial approximation theorem to show that:
(i) if K and L are simplicial complexes, there are at most countably many homotopy classes of continuous maps $f:|K| \rightarrow|L|$;
(ii) for any vertex v of a simplicial complex K the based map $\left(\left|K_{2}\right|, v\right) \rightarrow$ $(|K|, v)$ (i.e. the inclusion of the 2-skeleton) induces an isomorphism on fundamental groups.
4. Let K be a simplicial complex, and suppose that $\sigma \in K$ is not a proper face of any simplex. Show that $L=K \backslash\{\sigma\}$ is again a simplicial complex, and that the inclusion $V(L) \rightarrow V(K)$ defines a simplicial map $i: L \rightarrow K$.
If σ has dimension n, note that $d_{n}(\sigma)$ is an $(n-1)$-cycle and consists of simplices of L, so represents a class $\left[d_{n}(\sigma)\right] \in H_{n-1}(L)$; this defines a homomorphism $\varphi: \mathbb{Z} \rightarrow H_{n-1}(L)$ by $1 \mapsto\left[d_{n}(\sigma)\right]$. Construct a homomorphism $\phi: H_{n}(K) \rightarrow \mathbb{Z}$ such that

$$
0 \longrightarrow H_{n}(L) \xrightarrow{i_{*}} H_{n}(K) \xrightarrow{\phi} \mathbb{Z} \xrightarrow{\varphi} H_{n-1}(L) \xrightarrow{i_{*}} H_{n-1}(K) \longrightarrow 0
$$

is exact (i.e. the image of one map is precisely the kernel of the next), and show that $i_{*}: H_{j}(L) \rightarrow H_{j}(K)$ is an isomorphism for $j \neq n-1, n$.
5. Let K be a simplicial complex, and suppose that $\sigma \in K$ is not a proper face of any simplex, and that $\tau \leq \sigma$ is a face of one dimension lower which is not a face of any other simplex. Show that $L=K \backslash\{\sigma, \tau\}$ is again a simplicial complex, and that the inclusion $V(L) \rightarrow V(K)$ defines a simplicial map $i: L \rightarrow K$.
(i) By constructing a chain homotopy inverse to $i_{\bullet}: C_{\bullet}(L) \rightarrow C_{\bullet}(K)$, show that $i_{*}: H_{j}(L) \rightarrow H_{j}(K)$ is an isomorphism for all j.
(ii) * Prove the same thing using the previous question (twice) instead.
6. Using the two previous questions, compute the homology groups of the simplicial complexes described in Q1, and describe generators for each homology group.
7. Let K be an n-dimensional simplicial complex such that
(i) every $(n-1)$-simplex is a face of precisely two n-simplices, and
(ii) every pair of n-simplices can be connected by a sequence of n-simplices such that adjacent terms share an $(n-1)$-dimensional face.

Show that $H_{n}(K)$ is either \mathbb{Z} or trivial. In the first case show $H_{n}(K)$ is generated by a cycle which is a sum of all n-simplices with suitable orientations.
8. Suppose C is a finitely generated chain complex with $H_{*}(C)=0$. Show that id_{C} is null-homotopic, that is, id_{C} is chain homotopic to the 0 map.
9. * If K is a simplicial complex and $\operatorname{dim} K=n$, show that $|K|$ can be topologically embedded in $\mathbb{R}^{2 n+1}$.
10. * For simplicial complexes K and L inside \mathbb{R}^{m} and \mathbb{R}^{n} respectively, show that $|K| \times|L| \subset \mathbb{R}^{m+n}=\mathbb{R}^{m} \times \mathbb{R}^{n}$ is the polyhedron of a simplicial complex. [Prove it first in the case where both K and L consist of a single simplex (plus all its faces).]

