Example Sheet 1

1. Let $a: S^n \to S^n$ be the antipodal map, a(x) = -x. Show that a is homotopic to the identity map when n is odd. [Try n = 1 first.]

2. Let $f: S^1 \to S^1$ be a map which is not homotopic to the identity map. Show that there exists an $x \in S^1$ such that f(x) = x, and a $y \in S^1$ so that f(y) = -y.

3. Suppose that $f: X \to Y$ is a map for which there exist maps $g, h: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ h \sim \operatorname{id}_Y$. Show that f, g, and h are homotopy equivalences.

4. Show that a retract of a contractible space is contractible.

5. Construct a space which contains both the annulus $S^1 \times I$ and the Möbius band as strong deformation retracts.

6. For m < n, consider S^m as a subspace of S^n given by

$$\{(x_1, x_2, \dots, x_{m+1}, 0, \dots, 0) \mid \sum x_i^2 = 1\}.$$

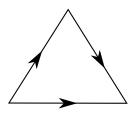
Show that the complement $S^n - S^m$ is homotopy equivalent to S^{n-m-1} .

7. For a map $f: S^1 \to X$ we define the space obtained by attaching an 2-cell to X along f to be the quotient space

$$X \cup_f D^2 := (X \coprod D^2) / \sim$$

where \sim is the smallest equivalence relation containing $b \sim f(b)$ for every $b \in S^1 \subset D^2$. Show that if $f, f': S^1 \to X$ are homotopic maps then $X \cup_f D^2 \sim X \cup_{f'} D^2$.

8. The $dunce\ cap$ is the space obtained from a solid triangle by gluing the edges together as shown.



Show that this space is contractible. [Hint: use the previous question.]

- **9.** Show that the Möbius band does not retract onto its boundary.
- 10. For based spaces (X, x_0) and (Y, y_0) show there is an isomorphism

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

- **11.** Given a homomorphism $\varphi: \pi_1(T^2, x_0) \to \pi_1(T^2, x_0)$, construct a continuous map $f: (T^2, x_0) \to (T^2, x_0)$ with $f_* = \varphi$. [Use $T^2 \cong \mathbb{R}^2/\mathbb{Z}^2$.] Which φ can be realized as f_* where f is a homeomorphism?
- **12.** Show that every homeomorphism $f: S^1 \to S^1$ extends to a homeomorphism $F: D^2 \to D^2$. Which of the homeomorphisms $f: T^2 \to T^2$ that you constructed in question 11 extend to homeomorphisms $F: S^1 \times D^2 \to S^1 \times D^2$?
- **13.** Construct a covering map $\pi : \mathbb{R}^2 \to K$ of the Klein bottle, and hence show that $\pi_1(K, k_0)$ is isomorphic to the group G with elements $(m, n) \in \mathbb{Z}^2$ and group operation

$$(m,n)*(p,q) = (m+(-1)^n \cdot p, n+q).$$

Show that K has a covering space homeomorphic to the torus T^2 , but that the torus does not have a covering space homeomorphic to K.

14.* A topological group consists of a set G equipped with both a topology and a group structure, so that the inversion map $i: G \to G$ (that sends $g \mapsto g^{-1}$) and the multiplication map $m: G \times G \to G$ (that sends $(g,h) \mapsto gh$) are continuous. (Here, $G \times G$ is equipped with the product topology.)

Let G be a path-connected, locally-path-connected topological group, and p: $\widehat{G} \to G$ be a path-connected covering space. Let e be the identity of G and $e \in p^{-1}(e)$.

- (i) Show that \widehat{G} has a unique structure of a topological group with unit ϵ so that p is a continuous homomorphism.
- (ii) Show that $\operatorname{Ker}(p) \subset \widehat{G}$ lies in the centre of \widehat{G} .
- (iii) Show that SO(3), the group of rotations of \mathbb{R}^3 (or equivalently of orthogonal 3×3 matrices of determinant 1), is homeomorphic to the projective space \mathbb{RP}^3 .
- (iv) Together, (i) and (iii) give a covering space $\widehat{SO(3)}$ homeomorphic to S^3 . Identify this group with a well-known matrix group.

MICHAELMAS 2022 jar60@cam.ac.uk