Algebraic Topology

Example Sheet 2

- 1. What is the universal cover of $S^1 \vee S^2$? Draw a picture.
- 2. Let $S = (S^1 \times 1) \cup (1 \times S^1) \subset S^1 \times S^1 = T^2$. Show that T^2 does not retract onto S.
- 3. If (X, x_0) is a pointed space, prove that $(X, x_0) \lor (I, 0)$ is homotopy equivalent to X. Deduce that any finite tree is contractible, and that the regular 4-valent tree is simply connected. *Show further that it is contractible.
- 4. Draw pictures of all the connected degree 2 covering spaces of $S^1 \vee S^1$. Show that they are all normal coverings, and describe the action of the group of deck transformations in each case. Now do the same thing for the connected degree 3 covering spaces of $S^1 \vee S^1$. Which of them are normal coverings?
- 5. Consider $X = S^1 \vee S^1$ with basepoint x_0 the wedge point, which has $\pi_1(X, x_0) = \langle a, b \rangle$ where a and b are given by the usual two loops. Describe covering spaces associated to:
 - (a) $\langle\!\langle a \rangle\!\rangle$, the normal subgroup generated by a;
 - (b) $\langle a \rangle$, the subgroup generated by a;
 - (c) the kernel of the homomorphism $\phi : \langle a, b \rangle \to \mathbb{Z}/4\mathbb{Z}$ given by $\phi(a) = 1$ and $\phi(b) = -1$.

What are the fundamental groups of these covering spaces?

- 6. Show that for any n > 0, the free group F_2 contains a subgroup isomorphic to F_n . Show that if m < n, there is no surjective homomorphism $\phi : F_m \to F_n$.
- 7. Let X be a Hausdorff space, and G a group acting on X by homeomorphisms, freely (i.e. if $g \in G$ satisfies $g \cdot x = x$ for some $x \in X$, then g = 1) and properly discontinuously (i.e. each $x \in X$ has an open neighbourhood $U \ni x$ such that $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ is finite).
 - (a) Show that the quotient map $X \to G \setminus X$ is a covering map.
 - (b) Deduce that if X is simply-connected then for any point $[x] \in G \setminus X$ we have an isomorphism of groups $\pi_1(G \setminus X, [x]) \cong G$.
 - (c) Hence show that for any $m \ge 2$ there is a space X with fundamental group \mathbb{Z}/m and universal cover S^3 . [*Hint: Consider* S^3 as the unit sphere in \mathbb{C}^2 .]

8. Show that the groups

 $G = \langle a, b \, | \, a^3 b^{-2} \rangle \quad \text{ and } \quad H = \langle x, y \, | \, xyxy^{-1}x^{-1}y^{-1} \rangle$

are isomorphic. By constructing surjective homomorphisms to appropriate groups, show that this group is infinite and non-abelian.

- 9. Show that the Klein bottle is homeomorphic to a space obtained by attaching a 2-cell to $S^1 \vee S^1$. Use this to give a presentation of its fundamental group with two generators and one relator. Give an explicit isomorphism between the group defined by your presentation and the group in Q13 of Sheet 1.
- 10. If $Y = \mathbb{RP}^2 \vee \mathbb{RP}^2$ and y_0 is the wedge point, let $G = \pi_1(Y, y_0)$, so

$$G \simeq \mathbb{Z}/2 * \mathbb{Z}/2 \simeq \langle a, b \, | \, a^2, b^2 \rangle.$$

- (a) Describe the covering space of Y corresponding to ker ϕ , where $\phi : G \to \mathbb{Z}/2$ is given by $\phi(a) = 1$ and $\phi(b) = 0$. Hence show that ker $\phi \simeq G$.
- (b) Draw a picture of the universal cover \widetilde{Y} , and describe the actions of the elements of the deck group corresponding to a, b, and ab on it. Deduce that ab has infinite order in G.
- 11. Consider the following configurations of pairs of circles in S^3 (we have drawn them in \mathbb{R}^3 ; add a point at infinity).

By computing the fundamental groups of the complements of the circles, show there is no homeomorphism of S^3 taking one configuration to the other.

12.* View S^3 as the set $\{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$, and let $K \subset S^3$ be the set

$$K = \{(z, w) \in S^3 \,|\, z^2 = w^3\}.$$

- (a) Show that K is homeomorphic to S^1 .
- (b) Use the Seifert-Van Kampen theorem to show that $\pi_1(S^3-K, x_0)$ is isomorphic to the group G in question 7. [*Hint: Let* $T = \{(z, w) \in S^3 | |z|^2 = |w|^3\}$. Split $S^3 K$ into two pieces along T K.]
- (c) Let $U = \{(z,0) | |z| = 1\}$ be the *unknot* in S^3 . Show that there is no homeomorphism $f: S^3 \to S^3$ with f(K) = U.
- (d) We can identify $S^3 (0, 0, 0, 1)$ with \mathbb{R}^3 . Using this identification, sketch the images of U and K in \mathbb{R}^3 . [*Hint: first sketch* T].