
Algebraic Topology, Examples 2

Michaelmas 2015

1. Let X be a Hausdorff space, and G a group acting on X by homeomorphisms,
freely (i.e. if g ∈ G satisfies g · x = x for some x ∈ X, then g = e) and properly
discontinuously (i.e. each x ∈ X has an open neighbourhood U 3 x such that {g ∈
G | g(U) ∩ U 6= ∅} is finite).

1. Show that the quotient map X → X/G is a covering map.

2. Deduce that if X is simply-connected and locally path-connected then for any
point [x] ∈ X/G we have an isomorphism of groups π1(X/G, [x]) ∼= G.

3. Hence show that for n ≥ 2 odd and any m ≥ 2 there is a space X with
fundamental group Z/m and universal cover Sn. [Consider Sn as the unit
sphere in Ck.]

2. Show that the Klein bottle has a cell structure with a single 0-cell, two 1-cells, and
a single 2-cell. Deduce that its fundamental group has a presentation 〈a, b | baba−1〉,
and show this is isomorphic to the group in Q13 of Sheet 1.

3. Show that the inclusion i : (S1 × {1}) ∪ ({1} × S1) ↪→ S1 × S1 does not admit a
retraction. [Where S1 ⊂ C is the elements of unit modulus, containing 1.]

4. A graph G is a space obtained by starting with a set E(G) of copies of the interval
I and an equivalence relation ∼ on E(G)× {0, 1}, and forming the quotient space of
E(G) × I by the minimal equivalence relation containing ∼. (More practically, it is
a space obtained from a collection of copies of I by gluing their ends together.) The
vertices are the equivalence classes represented by the ends of the intervals.

A tree is a graph which is contractible. A tree T inside a graph G is maximal if
no strictly larger subgraph is a tree.

(a) If T ⊂ G is a tree, show that the quotient map G → G/T is a homotopy
equivalence, and that G/T is again a graph. Hence show that every connected
graph is homotopy equivalent to a graph with a single vertex.

[Hint: You may wish to apply Proposition 0.17 from Hatcher].

1



Michaelmas 2014 2

(b) Show that the fundamental group of a graph with one vertex, based at the
vertex, is a free group with one generator for each edge of the graph. Hence
show that any free group occurs as the fundamental group of some graph. [We
have not required that a graph have finitely many edges.]

(c) Show that a covering space of a graph is again a graph, and deduce that a
subgroup of a free group is again a free group.

5. Consider X = S1 ∨ S1 with basepoint x0 the wedge point, which has π1(X, x0) =
〈a, b〉 where a and b are given by the two characteristic loops. Describe covering
spaces associated to

1. 〈〈a〉〉, the normal subgroup generated by a,

2. 〈a〉, the subgroup generated by a,

3. the kernel of the homomorphism φ : 〈a, b〉 → Z/4 given by φ(a) = [1] and
φ(b) = [3] = [−1].

Show that the free group on two letters contains a copy of itself as a proper subgroup.

6. Consider the 2-dimensional cell complex Y obtained from X in the previous
question by attaching 2-cells along loops in the homotopy classes a2 and b2, so that

π1(Y, x0) ∼= 〈a, b | a2, b2〉.

1. Construct (in pictures) the covering space of Y corresponding to the subgroup
〈a | a2〉.

2. Construct (in pictures) the covering space of Y corresponding to the kernel of
the homomorphism φ : 〈a, b | a2, b2〉 → Z/2 given by φ(a) = 1 and φ(b) = 0.
Hence show that Ker(φ) is isomorphic to 〈a, b | a2, b2〉.

7. Show that the groups

G = 〈a, b | a3b−2〉 and H = 〈x, y |xyxy−1x−1y−1〉

are isomorphic. Show that this group is non-abelian and infinite. [Construct surjective
homomorphisms to S3 and Z.]
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8. Consider the following configurations of pairs of circles in S3 (we have drawn them
in R3; add a point at infinity).

By computing the fundamental groups of the complements of the circles, show there
is no homeomorphism of S3 taking one configuration to the other.
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