
Algebraic Topology Examples 2
PTJ Michaelmas 2011

Starred questions are not necessarily harder than the unstarred ones (which are, in any case, not
all equally difficult), but they go beyond what you need to know for the course. Comments and
corrections are welcome, and should be sent to ptj@dpmms.cam.ac.uk.

1. Let n ≥ 2. Show that the following statements are equivalent:
(i) There is no continuous map f : Sn → Sn−1 satisfying f(−x) = −f(x) for all x.
(ii) For every continuous map g : RP n → RP n−1, g∗ : Π1(RP n) → Π1(RP n−1) is the trivial

homomorphism.
(iii) For every continuous map h : Sn → Rn, there exists x ∈ Sn such that h(x) = h(−x).
(iv) For any decomposition of Sn as the union of n+1 closed subsets F1, . . . , Fn+1, there exists

x ∈ Sn such that x and −x belong to the same set Fi.
[Hint: show (i)⇔ (ii) and (i)⇒ (iii)⇒ (iv)⇒ (i). For (i)⇒ (iii), given a counterexample to (iii),
consider the mapping x 7→ (h(x)−h(−x))/‖h(x)−h(−x)‖. For (iii)⇒(iv), consider the mapping
x 7→ (d(x, F1), . . . , d(x, Fn)), where d(x, F ) = inf{‖x − y‖ | y ∈ F}.]

Show also that (ii) is true for n = 2. [In fact the statements are true for all n, but the proof
involves methods beyond the scope of this course. (iii) is known as the Borsuk–Ulam Theorem,
and (iv) is known as the Lyusternik–Shnirel’man Theorem.]

2. Show that the free group F2 on two generators has exactly three subgroups of index 2 [hint:
consider homomorphisms F2 → Z/2Z]. Draw pictures of the three corresponding double coverings
of S1 ∨ S1, and calculate their fundamental groups.

3. Let X be the subspace of R2 which is the union of the x-axis with
⋃

n∈Z
Cn, where Cn is the

circle with centre (n, 1

3
) and radius 1

3
. Construct a covering projection X → S1 ∨ S1. Show that

X is homotopy equivalent to a countably-infinite wedge union of circles, and deduce that the free
group on two generators contains a subgroup which is free on countably many generators.

4. Let X be a Hausdorff topological space, and let G be a finite subgroup of the group of all
homeomorphisms X → X, such that no member of G other than the identity has a fixed point.
Let X/G denote the set of G-orbits, topologized as a quotient space of X. Show that the quotient
map X → X/G is a covering projection, and deduce that if X is simply connected and locally
path-connected then Π1(X/G) ∼= G. Hence show that, for any odd n > 1 and any m > 1, there
is a quotient space of Sn with fundamental group Z/mZ. [Hint: regard R2k as Ck. In contrast,
we’ll see later that for even n, the only group which can act on Sn so that no non-identity element
has a fixed point is the cyclic group of order 2.]

5. Let X be the subspace

{(x, sin π/x) | 0 ≤ x ≤ 1} ∪ {(0, y) | −1 ≤ y ≤ 1}

of R2, and let Y be the union of X with the three line segments {(0, y) | 1 ≤ y ≤ 2}, {(x, 2) |
0 ≤ x ≤ 1} and {(1, y) | 0 ≤ y ≤ 2}.

(i) Show that X is connected but not path-connected (if you didn’t already do this in Metric
and Topological Spaces).

(ii) Show that Y is simply connected but not locally path-connected.
(iii) Show that there is a double covering p : Z → Y where Z is connected (and thus not

homeomorphic to Y × {1, 2}).

6. (i) Let H be the Hawaiian earring
⋃

∞

n=1
Cn ⊆ R2, where Cn is the circle with centre (0,− 1

n
)

and radius 1

n
. Show that Π1(H, (0, 0)) is uncountable, and deduce that it is not finitely presented.

[In showing that you have constructed uncountably many distinct elements of Π1(H), you may
find it helpful to consider the continuous maps H → S1 collapsing all but one of the circles in H
to a point, and wrapping the remaining one around S1.]



*(ii) Let H ′ be the reflection of H in the x-axis. Do the inclusions H → H ∪ H ′ and
H ′ → H ∪ H ′ induce an isomorphism from the free product of two copies of Π1(H, (0, 0)) to
Π1(H ∪ H ′, (0, 0))?

*(iii) Now regard H and H ′ as embedded in the plane {(x, y, z) | z = 0} ⊆ R3; let C be the
cone on H with vertex (0, 0, 1), and C ′ the cone on H ′ with vertex (0, 0,−1). Is C ∪ C ′ simply
connected?

7. Let f : S1 → X be a continuous map, and consider the space Y = X ∪f B2, defined as in
question 9 on sheet 1. Let x = f(1); show that Π1(Y, x) ∼= Π1(X, x)/N , where N is the normal
subgroup generated by f∗(g) for a generator g of Π1(S

1). Deduce that, for any finitely presented
group G, there is a compact path-connected space Z with Π1(Z) ∼= G.

8. Show that the Klein bottle K may be described as (S1 ∨ S1) ∪f B2 for a suitable map
f : S1 → S1 ∨ S1. Use question 7 to give a presentation of Π1(K) with two generators and one
relation, and verify directly that this group is isomorphic to the one described in question 11 on
sheet 1.

9. Show that the finitely presented groups G = 〈a, b | a3 = b2〉 and H = 〈x, y | xyx = yxy〉
are isomorphic. Show also that this group is non-abelian and infinite. [Hint: find surjective
homomorphisms to the symmetric group S3 and to Z.]

10. Complex projective space CP n is the quotient of C
n+1\{0} by the equivalence relation which

identifies x and y if x = ty for some (complex) scalar t. Show that
(i) there is a quotient map hn : S2n+1 → CP n such that the inverse image of each point is a

copy of S1;
(ii) for n > 1, CP n is homeomorphic to CP n−1 ∪hn−1

B2n;
(iii) CP 1 is homeomorphic to S2.
Deduce that CP n is simply connected for all n.

*11. Let G be a connected graph, considered as a topological space in the way that we did for
the Cayley graph of F2 in lectures. Show that there is a simply connected subgraph G′ containing
all the vertices of G, and deduce that Π1(G) is isomorphic to the free group generated by the
edges of G \ G′. Hence show (generalizing the result of question 3) that any subgroup of a free
group is free.

*12. (i) Let G = SU(2) be the group of 2 × 2 unitary matrices with determinant 1. Show that
(the underlying space of) G is homeomorphic to S3.

(ii) Let H = SO(3), the group of 3 × 3 orthogonal matrices with determinant 1. Show that
H is homeomorphic to RP 3. [Hint: first show that the set of 180◦ rotations is homeomorphic to
RP 2.]

(iii) Show that {±I} is a normal subgroup of SU(2), and that the quotient SU(2)/{±I} is
isomorphic (as well as homeomorphic) to SO(3).

(iv) Show that there is a quotient space X of S3 such that Π1(X) is a non-abelian group of
order 120, whose only nontrivial normal subgroup has order 2. [Use question 4: recall that the
group of rotational symmetries of a regular dodecahedron is isomorphic to A5.]

*13. View S3 as the set {(z, w) ∈ C2 | |z|2 + |w|2 = 1}, and let T ⊆ S3 be the set

{(z, w) | z2 = w3} .

(T is called the trefoil knot.)
(i) Show that T is homeomorphic to S1.
(ii) Use the Seifert–Van Kampen theorem to show that Π1(S

3 \T ) is isomorphic to the group
G in question 9. [Method: let X = {(z, w) | |z|2 = |w|3}. Show that S3 \ X is homeomorphic to
the disjoint union of two copies of S1 × B2, and that X \ T is homeomorphic to S1 × (0, 1).]

(iii) Let U = {(z, 0) | |z| = 1} be the unknot in S3. Show that there is no homeomorphism
f : S3 → S3 for which f(U) = T . [Recall question 6 on sheet 1.]


