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Starred questions are not necessarily harder than the unstarred ones (which are, in any case, not
all equally difficult), but they go beyond what you need to know for the course. Comments and
corrections are welcome, and should be sent to ptj@dpmms.cam.ac.uk.

1. Let a : Sn → Sn be the antipodal map (defined by a(x) = −x). Show that a is homotopic
to the identity map if n is odd. [Hint: try n = 1 first! Later in the course, we’ll be able to
strengthen ‘if’ to ‘if and only if’.]

2. Which of the capital letters A, B, C, . . . , Z are contractible? And which are homotopy equiv-
alent to S1?

3. Let f : X → Y be a continuous map, and suppose we are given (not necessarily equal) con-
tinuous maps g, h : Y ⇉ X such that gf ≃ idX and fh ≃ idY . Show that f is a homotopy
equivalence.

4. (i) Let Y be the subspace {(x, 0) | x ∈ Q, 0 ≤ x ≤ 1} of R2, and let X be the cone on
Y with vertex (0, 1), i.e. the set of all points on straight line segments joining points of Y to
(0, 1). Show that X is contractible, but that in any homotopy H between the identity map on
X and the constant map with value (0, 0), the point (0, 0) must ‘move’ (i.e. there exists t with
H((0, 0), t) 6= (0, 0)).

*(ii) The problem in (i) arose because we chose the ‘wrong’ basepoint for X: if we had chosen
(0, 1) instead of (0, 0), all would have been well. Can you find a contractible space Z such that
every point of Z has to move in the course of a contracting homotopy?

5. Show that the torus minus a point, and the Klein bottle minus a point, are both homotopy
equivalent to S1∨S1. [Hint: draw pictures showing how S1∨S1 can be embedded as a deformation
retract in each space; do not attempt to write down precise formulae for the homotopies.]

6. Consider Sm embedded in Sn (m < n) as the subspace {(x1, x2, . . . , xm+1, 0, . . . , 0) |
∑

x2
i = 1}.

Show that Sn \ Sm is homotopy equivalent to Sn−m−1.

7. Let (X, x) and (Y, y) be two based spaces. Prove that Π1(X×Y, (x, y)) ∼= Π1(X, x)×Π1(Y, y).

8. (i) Let A be a set equipped with two binary operations · and ∗, having a common (two-sided)
identity element c and satisfying the ‘interchange law’

(p · q) ∗ (r · s) = (p ∗ r) · (q ∗ s)

which says that each of the operations is a ‘homomorphism’ relative to the other. Show that the
two operations coincide, and that they are (it is?) associative and commutative. [Hint: make
appropriate substitutions in the interchange law. This piece of pure algebra is known as the
Eckmann–Hilton argument : it has many applications besides the two described below.]

(ii) Let X be a space equipped with a continuous binary operation m : X × X → X having
a two-sided identity element e. Use part (i) and the previous question to show that Π1(X, e)
is abelian. [Familiar examples of such spaces include topological groups; but the existence of
inverses, and even the associativity of multiplication, are not needed for this result.]

*(iii) The second homotopy group Π2(X, x) of a pointed space (X, x) has elements which are
homotopy classes of continuous maps from the unit square I2 to X which map the boundary
∂I2 to x (the homotopies between such maps being required to fix ∂I2). Show that there are
two possible ways (‘horizontal’ and ‘vertical’) of composing two such ‘2-dimensional loops’, and
deduce that Π2(X, x) is an abelian group. [For n > 2, Πn(X, x) is defined similarly using the
unit n-cube In; it too is always abelian.]



9. Recall that, given a continuous map f : Sn−1 → X, we write X∪f Bn for the space obtained by
glueing an n-ball to X along f , i.e. the quotient of the disjoint union of X and Bn by the smallest
equivalence relation which identifies x with f(x) for each x ∈ Sn−1. If f and g are homotopic
maps Sn−1

⇉ X, show that the spaces X ∪f Bn and X ∪g Bn are homotopy equivalent.

10. The ‘topologist’s dunce cap’ D is the space obtained from the cone on the circle {(x, y, 0) |
x2 +y2 = 1} with vertex (0, 0, 1) by identifying the points (cos 2πt, sin 2πt, 0) and (1− t, 0, t) for
0 ≤ t ≤ 1. Show that D is contractible. [Hint: use the previous question; it’s helpful to ‘flatten
out’ the cone by cutting it along the line {(1 − t, 0, t) | 0 ≤ t ≤ 1}.]

11. Construct a covering projection p : R2 → K where K is the Klein bottle, and use it to show
that Π1(K) is isomorphic to the group whose elements are pairs (m, n) ∈ Z2, with group operation
given by

(m, n) ∗ (p, q) = (m + (−1)np, n + q) .

*12. Let p : X ′ → X be a covering projection, and suppose given basepoints x, x′ with p(x′) = x.
Show that, for any n > 1, p induces an isomorphism Πn(X ′, x′) ∼= Πn(X, x) (for the definition of
Πn, see question 8(iii)). Deduce that Πn(S1) is trivial for all n > 1. [Warning: this result does
not generalize to higher-dimensional spheres: we have Πn(Sn) ∼= Z for all n, but Πm(Sn) can be
nontrivial for m > n.]

*13. Let X be an arbitrary metric space, and K a compact metric space. Given two continuous
maps f, g : K ⇉ X, explain why the function k 7→ d(f(k), g(k)) (where d is the metric on X) is
bounded and attains its bounds. Show also that

d(f, g) = sup {d(f(k), g(k)) | k ∈ K}

defines a metric on the set Cts(K, X) of all continuous maps K → X.

Given H : K × I → X, show that H is continuous if and only if the function Ĥ defined by
Ĥ(t)(k) = H(k, t) is a continuous function I → Cts(K, X). Deduce that X is simply connected
if and only if Cts(S1, X) is path-connected.

*14. (i) Many textbooks give a different definition of local path-connectedness from the one
quoted in lectures: they say a space X is locally path-connected if, given x ∈ X and an open
neighbourhood U of x, there exists a smaller open neighbourhood V such that every point of V

can be joined to x by a path taking values in U (not necessarily in V ). Clearly, this is formally
weaker than the definition in lectures; and some books contrive to give the impression that it’s
actually weaker (for example, by calling spaces with this property semi-locally path-connected.)
Prove that it is in fact equivalent to the simpler definition. [Hint: given X satisfying the formally
weaker condition, x ∈ X and an open neighbourhood U of x, consider the set

{y ∈ X | y can be joined to x by a path lying in U} .]

(ii) Let X be a metric space, and equip Cts(I, X) with the metric defined in question 13.
Consider the mapping f : Cts(I, X) → X × X defined by f(u) = (u(0), u(1)). It is easy to see
that f is continuous, and that it is surjective if and only if X is path-connected; show that it
is an open map (i.e., that the image of each open subset of Cts(I, X) is open in X × X) if
and only if X is locally path-connected. [You’ll find this easier if you use the definition of local
path-connectedness from part (i).]


