ALGEBRAIC TOPOLOGY

EXAMPLE SHEET 4

- 1. For each of the following exact sequences of abelian groups, say as much as you can about the unknown group G and/or the unknown homomorphism α .
 - (a) $0 \to \mathbb{Z}/2 \to G \to \mathbb{Z} \to 0$
 - (b) $0 \to \mathbb{Z} \to G \to \mathbb{Z}/2 \to 0$
 - (c) $0 \to \mathbb{Z}/2 \to G \to \mathbb{Z}/2 \to 0$
 - (d) $0 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}/2 \to 0$
 - (e) $0 \to G \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \to \mathbb{Z}/2 \to 0$
- 2. Use the Mayer-Vietoris sequence to compute the homology of the following spaces. You may assume the existence of appropriate triangulations in each case.
 - (a) The Klein bottle. (Decompose as the union of two copies of $S^1 \times [0, 1]$.)
 - (b) $T^2 \# \mathbb{RP}^2$. (Decompose as the union of $T^2 D^2$ and the Mobius strip.)
- 3. Let X be the space obtained from $T^2 \simeq S^1 \times S^1$ by collapsing $A = S^1 \times 0$ to a point. Show that X is homeomorphic to the space obtained by identifying two points of S^2 . Use the Mayer-Vietoris sequence to compute $H_*(X)$. You may assume the existence of appropriate triangulations.
- 4. List all the closed surfaces (orientable or not) and compute their Euler characteristics.
- 5. By considering the boundary of $D^{n+1} \times D^{m+1}$, decompose S^{n+m+1} into the union of two sets X_1 and X_2 , where $X_1 \simeq S^n \times D^{m+1}$, $X_2 \simeq D^{n+1} \times S^m$, and $X_1 \cap X_2 \simeq S^n \times S^m$. Compute $H_*(S^n \times S^m)$ by applying the Mayer-Vietoris sequence to this decomposition.
- 6. If X is a simplicial complex, the suspension SX of X is $(X \times [0,1])/\sim$, where $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all $x, y \in X$. (In other words, we collapse $X \times 0$ and $X \times 1$ to two separate points.) If $f: X \to X$, we define $f_S: SX \to SX$ by $f_S(x,t) = (f(x), t)$.
 - (a) Show that $SX = CX \cup_X CX$.
 - (b) Show that for i > 0, $H_i(X) \cong H_{i+1}(SX)$. If X is connected, show that $H_1(SX) = 0$.
 - 1

(c) Let $\phi : H_i(X) \to H_{i+1}(SX)$ be the isomorphism of part (b). Show that the following diagram commutes:

$$\begin{array}{ccc} H_i(X) & \stackrel{f_*}{\longrightarrow} & H_i(X) \\ \phi & & \phi \\ H_{i+1}(X) & \stackrel{(f_S)_*}{\longrightarrow} & H_{i+1}(X) \end{array}$$

(It may help to understand ϕ at the chain level.)

- (d) Show that for each $d \in \mathbb{Z}$ there is a map $f_d : S^n \to S^n$ of degree d.
- 7. (a) Let $f: S^n \to S^n$ be given by $f((x_1, x_2, x_3, ..., ..., x_{n+1})) = (-x_1, x_2, x_3, ..., x_{n+1})$. Use problem 6 to show that f has degree -1.
 - (b) Let $g: S^{n+1} \to S^{n+1}$ be the antipodal map: $g(\mathbf{x}) = -\mathbf{x}$. Show that g has degree $(-1)^{n+1}$. Conclude that if n is even, g is not homotopic to the identity map. (Compare problem 1 on the first example sheet.)
- 8. Suppose Y is a finite simplicial complex, and that $p: X \to Y$ is a covering map. If $p^{-1}(y)$ consists of n points for each $y \in Y$, show that X is a finite simplicial complex and that $\chi(X) = n\chi(Y)$. If Y is a surface of genus 4 and n = 5, what is the genus of X? (You may assume X is orientable.)
- 9.* If X is a triangulated 3-manifold, show that $\chi(X) = 0$. (Hint: if V, E, F and G are the numbers of 0, 1, 2 and 3 simplices, then 2V = 2E 3F + 4G.)
- 10.* Suppose $K \subset S^3$ is a *tame knot*, *i.e.* K has a neighborhood U homeomorphic to $S^1 \times D^2$ so that $K = S^1 \times 0$. Use the Mayer-Vietoris sequence to compute $H_*(S^3 U)$.
- 11.* Suppose $p: S^n \to X$ is a covering map, and let G be the group of deck transformations.
 - (a) If n is even, show that $G \cong \mathbb{Z}/2$. (Interestingly, there is a covering map $S^4 \to X$ with $X \not\simeq \mathbb{RP}^4$.)
 - (b) If n is odd, show there is a covering map $p: S^n \to X$ with deck group Z/p for any p > 0. (Hint: view \mathbb{R}^{2k} as \mathbb{C}^k .)
 - (c) Show there is a covering map $p: S^3 \to X$ for which |G| = 120, and that $H_1(X) = 0$. When n = 3, this is the largest possible order of G. The manifold X is called the Poincare sphere. (Hint: A_5 is a subgroup of SO(3).)

J.Rasmussen@dpmms.cam.ac.uk