ALGEBRAIC TOPOLOGY

EXAMPLE SHEET 3

- 1. Suppose X and Y are simplicial complexes with vertices x and y respectively. Let $X \vee Y$ be the one point union obtained by identifying x and y. For i > 0, show that $H_i(X \vee Y) \cong H_i(X) \oplus H_i(Y)$. What about H_0 ?
- 2. Let X be a simplicial complex consisting of the four sides of a square and its eight diagonals. (So X has 5 vertices and 8 edges.) Compute $H_*(X)$. How is this related to problem 1?
- 3. Let X be the space obtained by removing two points from T^2 . What is $H_*(X)$?
- 4. Show that \mathbb{RP}^2 can be given the structure of a weakly simplicial complex with 2 vertices, 3 edges, and 2 2-simplices. Use this to compute $H_*(\mathbb{RP}^2)$. (Hint: $\mathbb{RP}^2 = S^1 \cup_f B^2$, where $f: S^1 \to S^1$ is given by $f(z) = z^2$.)
- 5. Use the simplicial approximation theorem to show that if K and L are finite simplicial complexes, then the set of homotopy classes of maps from K to L is countable.
- 6. Suppose X is a finite simplicial complex and let CX be the cone on X. Let v_0 be the vertex of the cone (*i.e.* the vertex of CX which is not in the image of the natural inclusion $X \subset CX$). Show that the inclusion $i_{\#} : C_*(v_0) \to C_*(CX)$ is a chain homotopy equivalence.
- 7. Let $X = \Delta^n$ be the *n*-simplex, and let $C_*(X)$ be the associated chain complex.
 - (a) What is the rank of the group $C_k(\Delta^n)$?
 - (b) Using problem 6, show that $H_k(\Delta^n) = 0$ for k > 0, and that $H_0(\Delta^n) \cong \mathbb{Z}$.
 - (c) Use the homeomorphism $S^{n-1} \simeq \partial \Delta^n$ to compute

$$H_i(S^{n-1}) \cong \begin{cases} \mathbb{Z} & i = 0, n-1 \\ 0 & \text{otherwise} \end{cases}$$

- (d)* More generally, let X_k be the *k*-skeleton of Δ^n , that is the union of all the *i*-dimensional faces of Δ^n for $i \leq k$. Compute $H_*(X_k)$.
- 8. Let Δ^n be the standard *n*-simplex in \mathbb{R}^n . An affine *n*-simplex in \mathbb{R}^m is the image of Δ^n under an injective, affine-linear map $\mathbb{R}^n \to \mathbb{R}^m$. If X is a finite simplicial complex of dimension *n*, show that there is an embedding $i : |X| \to \mathbb{R}^{2n+1}$ which maps each face of X to an affine simplex in \mathbb{R}^{2n+1} .

- 9. Let X be a simplical complex, and let $X_2 \subset X$ be its 2-skeleton, *i.e.* the union of all the 0, 1, and 2-dimensional simplices of X.
 - (a) Use the simplicial approximation theorem to show $\pi_1(X_2, x) \cong \pi_1(X, x)$.
 - (b) Use the Seifert van-Kampen theorem to prove the same result.
- 10.* Let A be a 2×2 matrix with integer coefficients. Multiplication by A defines a linear map $L_A : \mathbb{R}^2 \to \mathbb{R}^2$.
 - (a) Show that T_A descends to a well-defined map $f_A: T^2 \to T^2$.
 - (b) Compute the induced map $f_{A*}: H_*(T^2) \to H_*(T^2)$.
 - (c) Show that T is a homeomorphism if and only if the induced map on H_2 is an isomorphism.
- 11.* Suppose (C, d) is a chain complex defined over field **F**; *i.e.* $C = \bigoplus C_i$, where each C_i is a vector space over **F**, and $d_i : C_i \to C_{i-1}$ is an **F**-linear map with $d_i \circ d_{i+1} = 0$. Let $(H_i(C), 0)$ be the chain complex whose groups are the homology groups of C, and with trivial differential. Show that (C, d) is chain homotopy equivalent to $(H_i(C), 0)$. Give an example to show that if we replace **F** by \mathbb{Z} , the corresponding statement is false.

J.Rasmussen@dpmms.cam.ac.uk