1. For each of the following exact sequences of abelian groups, say what you can about the unknown group A and/or the unknown homomorphism α .

(a)
$$0 \to \mathbb{Z}/2 \to A \to \mathbb{Z} \to 0$$

(b)
$$0 \to \mathbb{Z} \to A \to \mathbb{Z}/2 \to 0$$

(c)
$$0 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}/2 \to 0$$

(d)
$$0 \to A \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$

(e)
$$0 \to \mathbb{Z}/3 \to A \to \mathbb{Z}/2 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \to 0$$

2. Let X and Y be triangulable spaces, and choose basepoints $x \in X$, $y \in Y$. Show that $\tilde{H}_*(X \vee Y) \cong \tilde{H}_*(X) \oplus \tilde{H}_*(Y)$. Show that for a wedge of n circles,

$$H_*(S^1 \vee \cdots \vee S^1) = \begin{cases} \mathbb{Z} & \text{if } * = 0\\ \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} & \text{if } * = 1\\ 0 & \text{otherwise.} \end{cases}$$
 (n summands)

3. For X the torus, the sphere, the two-holed torus, and the projective plane, assume there is a triangulation $X = Y \cup Z$ as pictured (with $Y \cap Z$ homeomorphic to the circle), and use the Mayer-Vietoris sequence to compute $H_*(X)$.

- 4. If K is a simplicial complex, the suspension of K, SK, is the simplicial complex obtained by gluing together two copies of the cone of K, CK, along the subcomplex K, $SK = CK \cup_K CK$. (If K = (V, S), then SK has as its set of vertices $V \coprod \{1, -1\}$ and as its simplices, the subsets σ , $\sigma \coprod \{1\}$, and $\sigma \coprod \{-1\}$ where σ ranges over the simplices S of K.)
 - (a) Use the Mayer-Vietoris sequence to construct an isomorphism $s: \tilde{H}_*(K) \cong \tilde{H}_{*+1}(SK)$.
 - (b) Show that a simplicial map $f: K \to K$ extends (uniquely) to a simplicial map $Sf: SK \to SK$ that is the identity on 1 and -1.

Problem continues on the next page.

- (c) Show that (in the notation of the previous parts) $s \circ \tilde{H}_* f = \tilde{H}_{*+1} S f \circ s$. (See also 7(a) below.)
- (d) Consider the simplicial map $a: SK \to SK$ that is the identity on K and switches 1 and -1. Show that $H_*a: H_*SK \to H_*SK$ is multiplication by -1.

- 5. The antipodal map on S^n .
 - (a) Let K be a simplicial complex homeomorphic to the sphere S^{n-1} . Show that the suspension of K is homeomorphic to the sphere S^n .
 - (b) Show that the antipodal map $S^n \to S^n$ induces on homology the map multiplication by $(-1)^{n+1}$.
 - (c) Show that if n is even, the antipodal map on S^n is not homotopic to the identity.

6. The Five Lemma

Consider the following commutative diagram, where the rows are exact.

$$A \longrightarrow B \xrightarrow{f} C \xrightarrow{g} D \longrightarrow E$$

$$\alpha \downarrow \cong \beta \downarrow \cong \gamma \downarrow ???? \quad \delta \downarrow \cong \epsilon \downarrow \cong$$

$$A' \longrightarrow B' \xrightarrow{f'} C' \xrightarrow{g'} D' \longrightarrow E'$$

Suppose that the maps α , β , δ , and ϵ are known to be isomorphisms. The problem is to show that γ is then an isomorphism.

(a) First show that γ is a monomorphism (i.e., is injective): Take an element x in the kernel of γ . (1) Show that g(x) is zero and conclude that x = f(y) for some $y \in B$. (2) Show that y is in the image of A and conclude that x = 0.

Problem continues on the next page.

- (b) Now show that γ is an epimorphism (i.e., is surjective). Take an element $x' \in C'$ and show that it is in the image of γ as follows: (1) Show that there exists an element z in C so that $g(\delta(z)) = g'(x')$. (2) Show that there exists an element $y \in B$ so that $f'(\beta(y)) = x' \gamma(z)$ and conclude that $\gamma(z + f(y)) = x'$.
- 7. Let K and K' be simplicial complexes and $A \subset K$, $A' \subset K$ subcomplexes. Let $f: K \to K'$ be a simplicial map that sends A into A'.
 - (a) Use the definition of the connecting homomorphism to show that the following diagram commutes

$$H_{n+1}(K,A) \xrightarrow{\partial} H_n(A)$$

$$\downarrow^{H_{n+1}f} \downarrow \qquad \qquad \downarrow^{H_nf}$$

$$H_{n+1}(K',A') \xrightarrow{\partial} H_n(A')$$

- (b) Show that if any two of the maps $H_*(A) \to H_*(A')$, $H_*(K) \to H_*(K')$, and $H_*(K,A) \to H_*(K',A')$ induced by f are isomorphisms (for all *), then so is the third.
- (c) Suppose $K = A \cup B$ and $K' = A' \cup B'$ for subcomplexes $B \subset K$ and $B' \subset K'$ and suppose f also sends B into B'. Show that if the maps $H_*(A \cap B) \to H_*(A' \cap B')$, $H_*(A) \to H_*(A')$, and $H_*(B) \to H_*(B')$ induced by f are all isomorphisms, then so is $H_*(K) \to H_*(K')$
- 8. This problem studies the map $u: SdK \to K$ defined in Example Sheet 3s, problem $7^1/2$ for an ordered simplicial complex K. In this problem, we will show that u induces an isomorphism on homology. The proof is by double induction, over m, n: Assume that for every ordered simplicial complex K with $\dim K \leq m$ having n or fewer m-simplices, the map $u: SdK \to K$ induces an isomorphism on homology. (Here $\dim K$ denotes the largest dimension of a simplex of K.)
 - (a) Check the base cases m = 0, n arbitrary, and (assuming the cases m 1 and n arbitrary) m arbitrary, n = 0.
 - (b) Recall that by definition, $Sd\Delta[m]$ is the cone $CSd\partial\Delta[m]$. Prove that $u: Sd\Delta[m] \to \Delta[m]$ induces an isomorphism on homology.
 - (c) Complete the argument by proving the inductive step.

End of Example Sheet 4.