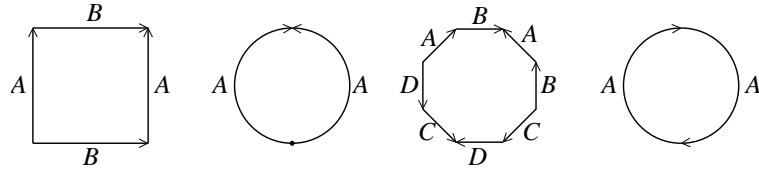


1. Polygon gluing diagrams are not triangulations of the spaces. Subdivide the gluing diagrams for the torus, the sphere, the two-holed torus¹, and the projective plane to get triangulations.



2. Prove the second half of the geometric realization theorem: If X and Y have triangulations with isomorphic underlying abstract simplicial complexes, then X and Y are homeomorphic spaces.

3. A set of points $\{x_1, \dots, x_\ell\}$ in \mathbb{R}^m is said to be “in general position” if the affine span of every subset with $i + 1$ elements is i dimensional for all $i + 1 \leq m + 1$. (For example, the empty set is in general position for any \mathbb{R}^m ; any subset of \mathbb{R} is in general position; $\{(0, 0), (1, 0), (0, 1), (1, 1)\}$ is in general position in \mathbb{R}^2 but $\{(0, 0), (1, 0), (0, 1), (1/2, 1/2)\}$ is not.)

(a) If $\{x_1, \dots, x_\ell\} \subset \mathbb{R}^m$ is in general position, then the set

$$\{x \in \mathbb{R}^m \mid \{x_1, \dots, x_\ell, x\} \text{ is in general position}\}$$

is an open dense subset. (Hence the name “general position”.)

(b) Show that if K is a simplicial complex of dimension n (i.e., having no $n + 1$ simplices), it has a geometric realization by affine simplices in \mathbb{R}^{2n+1} . (Our standard model used \mathbb{R}^v where v is the number of vertices in K .)

4. Show that a set of vertices in a simplicial complex forms a simplex if and only if the intersection of their open stars is non-empty in the geometric realization.

5. Use the simplicial approximation theorem to show:

(a) If X and Y are compact triangulable spaces, then there are at most countably many homotopy classes of maps from X to Y .

(b) If $m < n$, then any map $S^m \rightarrow S^n$ is homotopic to the constant map.

Example Sheet 3 continues on the next page.

6. Let K be a simplicial complex.

- (a) Show that if $|K|$ is connected, then any two vertices in K can be connected by a sequence of edges in K .
- (b) Let K_2 be the “2-skeleton” of K : It is the subcomplex of K containing all vertices, 1-simplices, and 2-simplices. For a vertex a , show that $\pi_1(K_2, a) \rightarrow \pi_1(K, a)$ is an isomorphism.

7. Use your triangulations from problem 1 to compute the homology groups of: the torus, the sphere, the two-holed torus, and the projective plane.

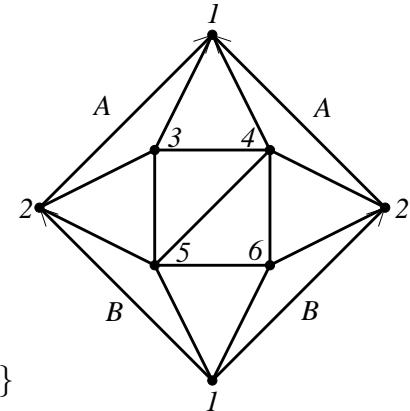
8. A pseudo n -manifold is a simplicial complex K with the following properties:

- (i) Every simplex is a subsimplex of an n -simplex.
- (ii) Every $(n-1)$ -simplex is a face of exactly two n -simplices.
- (iii) For any two n -simplices σ and τ , there is a sequence $\sigma = \sigma_0, \sigma_1, \dots, \sigma_r = \tau$ where each σ_i and σ_{i+1} intersect along an $(n-1)$ -simplex.

(a) Show that for any triangulation of a connected 2-manifold, the simplicial complex is a pseudo 2-manifold². (This holds for triangulations of connected n -manifolds as well.)

(b) Show that $V = \{1, 2, 3, 4, 5, 6\}$ and

$$S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \\ \{2, 3\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \\ \{3, 4\}, \{3, 5\}, \{4, 5\}, \{4, 6\}, \{5, 6\} \\ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 2, 6\}, \\ \{1, 3, 4\}, \{1, 5, 6\} \\ \{2, 3, 5\}, \{2, 4, 6\}, \{3, 4, 5\}, \{4, 5, 6\} \}$$



defines a simplicial complex that is a pseudo 2-manifold but not a 2-manifold.

(c) Show that if $H_n(K)$ is non-trivial, then $H_n(K) \cong \mathbb{Z}$ and is generated by the sum of the n -simplices with signs.

9. Assume the homology of the $(n+1)$ -simplex $\Delta[n+1]$ satisfies

$$H_i(\Delta[n+1]) = \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i > 0. \end{cases}$$

Use the homeomorphism $S^n \cong \partial\Delta[n+1]$ to prove

$$H_i(S^n) = \begin{cases} \mathbb{Z} & i = 0, n \\ 0 & i \neq 0, n. \end{cases}$$

Example Sheet 3 continues on the next page.

10. Use the last problem to prove:

- (a) \mathbb{R}^m and \mathbb{R}^n are not homeomorphic if $m \neq n$.
- (b) The disk B^{n+1} does not retract onto the sphere S^n . (Recall, we showed in class that this implies the Brouwer fixed point theorem for B^{n+1} .)

11. For a compact triangulable space X , define the Euler characteristic $\chi(X)$ by

$$\chi(X) = h_0 - h_1 + h_2 - \dots,$$

where h_i is the dimension of the real vector space $H_i(X; \mathbb{R})$. (Since $h_i = 0$ for i large, the formula above is a finite sum.)

- (a) Fix a triangulation of X , and show

$$\chi(X) = s_0 - s_1 + s_2 - \dots,$$

where s_i denotes the number of i -simplices in the triangulation. [Hint: In the terminology of linear algebra, the dimension of the image of a linear transformation is called the “rank” and the dimension of its kernel is the called the “nullity”.]

- (b) Prove Euler’s theorem: If P is a convex polyhedron in \mathbb{R}^3 , then $F - E + V = 2$. [Hint: Put a new vertex at the center of each polygonal face.]

12. Let K be a simplicial complex and $f: K \rightarrow K$ a simplicial self-map. Choose an order for the vertices of K and let C_n denote the vector space of n -chains with coefficients in \mathbb{R} (for each n) and $C_n f: C_n \rightarrow C_n$ the induced linear transformation.

- (a) Use the standard basis for C_n (of n -simplices of K) to show that if the trace $Tr(C_n f)$ is non-zero, then the geometric realization of f has a fixed point.
- (b) Show that $Tr(C_n f) = Tr(Z_n f) + Tr(B_{n+1} f)$ and $Tr(Z_n f) = Tr(B_n f) + Tr(H_n f)$, where
 - Z_n denotes the vector space of n -cycles (with coefficients in \mathbb{R}) and $Z_n f$ is the induced map on the cycles
 - $B_{n+1} = C_n / Z_n$ and $B_{n+1} f$ is the induced map on B_{n+1} , and
 - $H_n = H_n(K; \mathbb{R}) = Z_n / B_n$ and $H_n f$ is the induced map on H_n .
- (c) Show that

$$\sum (-1)^n Tr(C_n f) = \sum (-1)^n Tr(H_n f)$$

- (d) Conclude that if the number of the previous part is non-zero, the geometric realization of f has a fixed point.

Problem continues on the next page.

This is a weak version of the Lefschetz fixed point theorem. It only takes uniform continuity, plus the simplicial approximation theorem, plus some bookkeeping to prove the full version:

Theorem (The Lefschetz fixed point theorem) Let X be a compact triangulable space and let $f: X \rightarrow X$ be a continuous map. If the Lefschetz number $\Lambda(f) = \sum(-1)^n \text{Tr}(H_n f)$ is non-zero, then f has a fixed point.

(See for example Munkres, *Elements of Algebraic Topology*, pp. 125–126 for an argument.)

What makes this theorem particularly powerful is that the formula for $\Lambda(f)$ only depends on the homotopy class of the map; this is already interesting for simplicial maps. (Also note: The Euler characteristic is the Lefschetz number of the identity map.)

Endnotes

¹The version of the example sheets handed out in class had a different gluing diagram for the two-holed torus. Although it does not change the problem, the original diagram was too ugly to leave uncorrected (and for this reason is not included here for comparison).

²The version of the example sheets handed out in class said “pseudo n -manifold” here; please note the correction.

End of Example Sheet 3.