

1. Consider a space $X = U \cup V$ with U and V open and $U \cap V$ connected. Let $x \in U \cap V$. Label the maps on $\pi_1(-, x)$ induced by the inclusions as indicated in the diagram.

$$\begin{array}{ccc} \pi_1(U \cap V, x) & \xrightarrow{f_1} & \pi_1(U, x) \\ f_2 \downarrow & & \downarrow g_1 \\ \pi_1(V, x) & \xrightarrow{g_2} & \pi_1(X, x) \end{array}$$

(a) Show that if f_1 is an isomorphism, then so is g_2 .

(b) Show that if f_1 is an epimorphism, then so is g_2 , and identify its kernel.

(c) Given a presentation (a description in terms of generators and relations) for each of $\pi_1(U \cap V, x)$, $\pi_1(U, x)$, and $\pi_1(V, x)$, give a presentation for $\pi_1(X, x)$.

2. Let (X, x) and (Y, y) be locally contractible based spaces. Prove that $\pi_1(X \vee Y, x)$ is isomorphic to $\pi_1(X, x) * \pi_1(Y, y)$. Show that a bouquet of n circles $(S^1 \vee \dots \vee S^1)$ has fundamental group the free group on n generators.

3. Let L be the “infinite ladder of circles” given by the subset of \mathbb{R}^2 consisting of the union of the circle of radius $1/2$ around each point $(n, 0)$ for $n \in \mathbb{Z}$.

(a) Choose a basepoint for L and show that the fundamental group is a free group on an infinite number of generators.

(b) Show that the action of \mathbb{Z} on L (where $n \in \mathbb{Z}$ acts by the map that sends (x, y) to $(x + n, y)$) is properly discontinuous and its quotient is homeomorphic to $S^1 \vee S^1$.

(c) Conclude that the free group on an infinite number of generators is isomorphic to a subgroup of the free group on two generators.

4. Fundamental groups of complements.

(a) Show that the fundamental group of a complement in \mathbb{R}^2 of a finite number of points is a free group.

(b) Show that the fundamental group of a complement in \mathbb{R}^3 of a finite number of points is simply connected.

(c) Show that the fundamental group of the complement in \mathbb{R}^3 of the circle $\{(x, y, 0) \mid x^2 + y^2 = 1\}$ is a free group on one generator.

Example Sheet 2 continues on the next page.

5. Let (X, x) be a based space, $f: S^1 \rightarrow X$ a based map, and $Y = X \cup_f B^2$ the space obtained by gluing B^2 onto X along f .

- Show that if X is locally contractible then so is Y .
- Let $\alpha \in \pi_1(X, x)$ be the element represented by f . Show that $\pi_1(Y, x)$ is isomorphic to $\pi_1(X, x)/N$, where N is the smallest normal subgroup of $\pi_1(X, x)$ containing α .
- Show that any finitely presented group is the fundamental group of a locally contractible space: Given a presentation of the group in terms of a finite number of generators and a finite number of relations, construct a locally contractible space with isomorphic fundamental group.

6. This exercise and the next attempts to define a concept of “orientation” for a 2-manifold M (a metrizable space where every point lies in an open set that is homeomorphic to \mathbb{R}^2 – such an open set is called a “euclidean neighborhood”).

- For a point x in M , and a euclidean neighborhood E of x , show that (for any basepoint) the fundamental group of $E - \{x\}$ is a free group on one generator (i.e., is isomorphic to \mathbb{Z}).
- Show that if $E \subset E'$ are euclidean neighborhoods of x , then the induced map $\pi_1(E - \{x\}) \rightarrow \pi_1(E' - \{x\})$ is an isomorphism.
- Let E_1 and E_2 be two euclidean neighborhoods of x . Show that there is a euclidean neighborhood E_3 of x which is contained in both E_1 and E_2 .
- Let E_0 be a euclidean neighborhood of x , and let o_{x, E_0} be a choice of generator for $\pi_1(E_0 - \{x\})$. Show that there is one and only one way to assign a generator $o_{x, E}$ for each euclidean neighborhood E of x (with the one as given on E_0) such that whenever $E \subset E'$, the induced isomorphism of π_1 sends $o_{x, E}$ to $o_{x, E'}$. We call such a system of choices a “local orientation at x ”. (You can think of this as choosing a counter-clockwise direction for circles around x .)

7. Let M be a 2-manifold. Choose a local orientation around each point. Let B denote the open ball of radius 1 in \mathbb{R}^2 .

- Let U be an open set of M and $f: U \rightarrow \mathbb{R}^2$ a homeomorphism. Show that (for any basepoint) $\pi_1(U - f^{-1}B)$ is a free group on one generator
- Show that for every x in $f^{-1}B$ the inclusion of $U - f^{-1}B$ in $U - \{x\}$ induces an isomorphism on fundamental groups.

Problem continues on the next page.

An “orientation” for M is a choice of local orientations such that whenever U and f are as above, there exists a generator $o_{U,f}$ of $\pi_1(U - f^{-1}B)$ so that the inclusion of $U - f^{-1}B$ in $U - \{x\}$ sends $o_{U,f}$ to $o_{U,x}$. M is said to be “orientable” if there exists an orientation.

(c) Show that the local orientations form an orientation if and only if for every point x in M , there exists an open set U , a homeomorphism $f: U \rightarrow \mathbb{R}^2$ with $x \in f^{-1}B$, and a generator $o_{U,f}$ of $\pi_1(U - f^{-1}B)$ such that for every y in $f^{-1}B$, the inclusion of $U - f^{-1}B$ in $U - \{y\}$ sends $o_{U,f}$ to $o_{U,y}$.

8. Orientability.

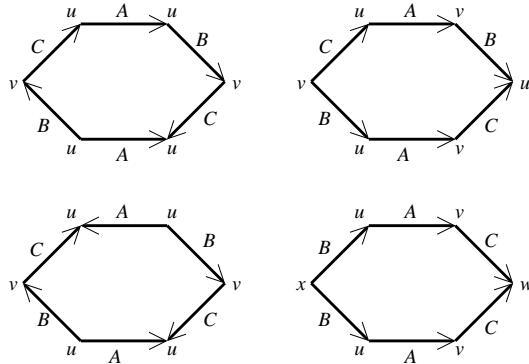
- (a) Show that the sphere and the torus are orientable.
- (b) Show that the (open) Möbius band is not orientable.
- (c) Show that if M contains a nonempty open subset that is not orientable then M is not orientable.
- (d) Show that the projective plane and Klein bottle are not orientable.

9. Let M be a connected manifold. Show that M is “homogeneous” in the following sense: Given $x, y \in M$, there is a homeomorphism from M to M (an “automorphism”) that sends x to y . Here is one possible outline: For each $x \in M$, let

$$S_x = \{y \in M \mid \text{there exists an automorphism of } M \text{ taking } x \text{ to } y\}$$

- (a) Show that S_x contains a Euclidean neighborhood of x .
- (b) Show that if $y \in S_x$ and $z \in S_y$ then $z \in S_x$. Conclude that S_x is open.
- (c) Show that S_x is closed. [Hint: Consider a Euclidean neighborhood of a limit point.]

10. Take the hexagon and glue the vertexes and sides as indicated by the labels. Which spaces are manifolds, and which manifolds are they?



End of Example Sheet 2.