Algebraic Topology 2004 Example Sheet 2

1. Consider a space X = U UV with U and V open and U NV connected. Let
x € UNV. Label the maps on 7 (—,z) induced by the inclusions as indicated
in the diagram.

(U NV,2) L (U, 2)

w1 (V, ) T (X, x)

(a) Show that if f; is an isomorphism, then so is go.
(b) Show that if f; is an epimorphism, then so is g2, and identify its kernel.
(c) Given a presentation (a description in terms of generators and relations) for

each of m (UNV,x), m (U, z), and 71(V, x), give a presentation for m (X, z).

2. Let (X, z) and (Y, y) be locally contractible based spaces. Prove that m (X VY, x)
is isomorphic to 71 (X, x)*71 (Y, y). Show that a bouquet of n circles (S1V---v.St)
has fundamental group the free group on n generators.

3. Let L be the “infinite ladder of circles” given by the subset of R? consisting of
the union of the circle of radius 1/2 around each point (n,0) for n € Z.

(a) Choose a basepoint for L and show that the fundamental group is a free
group on an infinite number of generators.

(b) Show that the action of Z on L (where n € Z acts by the map that sends (x,y)
to (x 4+ n,y)) is properly discontinuous and its quotient is homeomorphic to

CRAVACES
(¢) Conclude that the free group on an infinite number of generators is isomorphic
to a subgroup of the free group on two generators.
4. Fundamental groups of complements.

(a) Show that the fundamental group of a complement in R? of a finite number
of points is a free group.

(b) Show that the fundamental group of a complement in R? of a finite number
of points is simply connected.

(c) Show that the fundamental group of the complement in R? of the circle
{(x,y,0) | 22 + y? = 1} is a free group on one generator.
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5. Let (X,z) be a based space, f:S! — X a based map, and Y = X Uy B? the
space obtained by gluing B2 onto X along f.

(a) Show that if X is locally contractible then so is Y.

(b) Let a@ € m(X,z) be the element represented by f. Show that m (Y, x)
is isomorphic to 71 (X, z)/N, where N is the smallest normal subgroup of
m1 (X, x) containing a.

(c) Show that any finitely presented group is the fundamental group of a locally
contractible space: Given a presentation of the group in terms of a finite
number of generators and a finite number of relations, construct a locally
contractible space with isomorphic fundamental group.

6. This exercise and the next attempts to define a concept of “orientation” for a
2-manifold M (a metrizable space where every point lies in an open set that is
homeomorphic to R? — such an open set is called a “euclidean neighborhood”).

(a) For a point x in M, and a euclidean neighborhood FE of x, show that (for any
basepoint) the fundamental group of F —{x} is a free group on one generator
(i.e., is isomorphic to Z).

(b) Show that if E C E’ are euclidean neighborhoods of z, then the induced
map 71 (F — {z}) — m(E" — {z}) is an isomorphism.

(c) Let Ey and E5 be two euclidean neighborhoods of . Show that there is a
euclidean neighborhood FE3 of x which is contained in both E; and FEs.

(d) Let Ey be a euclidean neighborhood of z, and let o, g, be a choice of gener-
ator for m1(Ey — {z}). Show that there is one and only one way to assign a
generator o, g for each euclidean neihborhood E of = (with the one as given
on Ey) such that whenever E C E’, the induced isomorphism of m; sends
0z,E t0 05 5. We call such a system of choices a “local orientation at x”.
(You can think of this as choosing a counter-clockwise direction for circles
around x.)

7. Let M be a 2-manifold. Choose a local orientation around each point. Let B
denote the open ball of radius 1 in R2.

(a) Let U be an open set of M and f:U — R? a homeomorphism. Show that
(for any basepoint) 71 (U — f~B) is a free group on one generator

(b) Show that for every = in f~!B) the inclusion of U — f !B in U — {x} induces
an isomorphism on fundamental groups.

Problem continues on the next page.
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An “orientation” for M is a choice of local orientations such that whenever U
and f are as above, there exists a generator oy s of w1 (U — f~!'B) so that the
inclusion of U — f~'B in U —{z} sends oy ¢ to oy . M is said to be “orientable”
if there exists an orientation.

(c) Show that the local orientations form an orientation if and only if for every
point = in M, there exists an open set U, a homeomorphism f:U — R? with
r € f7'B, and a generator oy s of w1 (U — f~'B) such that for every y in
1B, the inclusion of U — f~'B in U — {y} sends oy ¢ to oy .
8. Orientability.
(a) Show that the sphere and the torus are orientable.

(b) Show that the (open) Mobius band is not orientable.

(c) Show that if M contains a nonempty open subset that is not orientable then
M is not orientable.

(d) Show that the projective plane and Klein bottle are not orientable.
9. Let M be a connected manifold. Show that M is “homogeneous” in the following
sense: Given x,y € M, there is a homeomorphism from M to M (an “auto-

morphism”) that sends = to y. Here is one possible outline: For each = € M,
let

S, = {y € M | there exists an automorphism of M taking = to y}

(a) Show that S, contains a euclidean neighborhood of x.

(b) Show that if y € S, and z € S, then z € S,. Conclude that S, is open.

(c) Show that S, is closed. [Hint: Consider a euclidean neighborhood of a limit
point.

10. Take the hexagon and glue the vertexes and sides as indicated by the labels.
Which spaces are manifolds, and which manifolds are they?
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