ALGEBRAIC GEOMETRY, SHEET III: LENT 2022

- 1. Let $V_1 = \mathbb{V}(X_0^8 + X_1^8 + X_2^8)$ and $V_2 = \mathbb{V}(X_0^4 + X_1^4 + X_2^4)$ be curves in \mathbb{P}^2 . Show that each is smooth and irreducible.
- 2. Let V_1 and V_2 be as in the previous question. Let $\varphi : V_1 \to V_2$ be the morphism sending X_i to X_i^2 . Determine the degree of this morphism and compute the ramification indices for all points of V_1 .
- 3. Let $V \subset \mathbb{P}^2$ be a smooth degree d curve in \mathbb{P}^2 . Let P be a point on V and consider the projection from P restricted to V:

 $\pi: V \to \mathbb{P}^1.$

Prove that for all but finitely many points Q on \mathbb{P}^1 , the set $\pi^{-1}(Q)$ contains d-1 points. Deduce the degree of π .

- 4. We have seen in lecture that if ω and ω' are differentials on a curve V, then $\operatorname{div}(\omega)$ and $\operatorname{div}(\omega')$ differ by a principal divisor. Let t be the coordinate on the first affine patch $\mathbb{A}^1 \subset \mathbb{P}^1$. Explicitly calculate the divisor of $d(t^2)$, and thereby verify that it is equivalent to the divisor of dt.
- 5. Let U be the complement of the origin in \mathbb{A}^2 . Consider a rational map

$$\varphi:\mathbb{A}^2\dashrightarrow\mathbb{A}^1$$

that is regular on all points of U. Prove that φ is a morphism. Comment on whether U can be an affine variety.

- 6. Let $A = \mathbb{C}[X_0, X_1, Y_0, Y_1]$. An element of A is bihomogeneous of bidegree (d, e) if it is homogeneous of degree d in the X_i variables, treating the Y_i as scalars, and is similarly homogeneous of degree e in the Y_i variables. Let f in A be bihomogeneous of bidegree (d, e). Prove¹ that the vanishing locus of f is a well-defined subset of $\mathbb{P}^1 \times \mathbb{P}^1$.
- 7. Let $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ be the Segre embedding. Let $V \subset \mathbb{P}^1 \times \mathbb{P}^1$ be a Zariski closed subset in the subspace topology on $\mathbb{P}^1 \times \mathbb{P}^1$. Prove that V is the vanishing locus of a set of bihomogeneous polynomials.
- 8. Let $V \subset \mathbb{P}^1 \times \mathbb{P}^1$ be the vanishing locus of a bihomogeneous polynomial. Prove that V is closed in the subspace topology under the embedding $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$.
- 9. It is true that every pair of curves in \mathbb{P}^2 intersect. Now consider a morphism $\varphi : \mathbb{P}^2 \to \mathbb{P}^1$. By examining sets of the form $V_Q = \varphi^{-1}(Q)$ for different Q, prove that φ must be constant. Deduce that \mathbb{P}^2 is not isomorphic to a subvariety of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

Dhruv Ranganathan, dr508@cam.ac.uk

¹There is nothing in this question that is meant to trick you.