ALGEBRAIC GEOMETRY, SHEET I: LENT 2022

Topological Spaces of Varieties

- 1. Describe all the open sets in the topological subspace $\mathbb{V}(XY) \subset \mathbb{A}^2$ in the Zariski topology.
- 2. Equip $\mathbb{A}^1 \times \mathbb{A}^1$ with the product topology, where each factor is given the Zariski topology. Characterize all the closed sets in this topology.
- 3. Prove that \mathbb{A}^2 with the Zariski topology has the property that every open cover has a finite subcover. (If you have trouble with this, start with \mathbb{A}^1).
- 4. Let V and W be affine varieties and let $V \to W$ be a morphism. Verify that it is continuous in the Zariski topology. Suppose $\varphi : \mathbb{A}^1 \to \mathbb{A}^1$ is a set theoretic map that is continuous in the Zariski topology. Is it necessarily true that φ is a morphism?
- 5. Identify \mathbb{A}^{n^2} with the set of complex $n \times n$ matrices. Prove that the subset $GL(n, \mathbb{C})$ of invertible matrices is Zariski dense. Prove that the set of matrices with n distinct eigenvalues is also Zariski dense.

Irreducible Components

6. Prove that in a unique factorization domain, every irreducible element is prime. Using this, prove that if f is an irreducible polynomial in $\mathbb{C}[\underline{X}]$ then $\mathbb{V}(f)$ is irreducible. Consider the variety

$$V = \mathbb{V}(X^2 - YZ) \subset \mathbb{A}^3$$

Find an element in $\mathbb{C}[V]$ that is irreducible but not prime.

- 7. Let $V \subset \mathbb{A}_k^n$ be an affine variety. Suppose $V = V_1 \cup \cdots \cup V_n$ and $V = V'_1 \cup \cdots \cup V'_m$ are two decompositions into irreducible varieties. Assume that no V_i is contained in V_j for $i \neq j$ and similarly for the V'_i i.e. the decompositions are non-redundant. Prove that n = m and the two decompositions coincide up to reordering.
- 8. Consider the ideal

$$I = \langle X^2 + Y^2 + Z^2, X^2 - Y^2 - Z^2 + 1 \rangle$$

in $\mathbb{C}[X, Y, Z]$. Let V be the variety $\mathbb{V}(I)$. Calculate the irreducible components of V.

Morphisms of varieties

9. Prove that the affine curve V given by $\mathbb{V}(XY - 1)$ in \mathbb{A}^2 is not isomorphic to \mathbb{A}^1 . Calculate all morphisms

$$\mathbb{A}^1 \to V$$

Dhruv Ranganathan, dr508@cam.ac.uk

10. Let V and W be affine varieties in \mathbb{A}^n and \mathbb{A}^m respectively. Prove that the product $V \times W \subset \mathbb{A}^{n+m}$ is also an affine variety. Prove that the projection

$$V \times W \to V$$

is a morphism. (More difficult: the product of irreducible varieties is also irreducible).

11. Let $\pi : \mathbb{A}^3 \to \mathbb{A}^1$ be the projection onto the first coordinate. For each point z in \mathbb{A}^1 , the set theoretic preimage $\pi^{-1}(z)$ is isomorphic to \mathbb{A}^2 . Denote this preimage by \mathbb{A}^2_z . Construct a variety $V \subset \mathbb{A}^3$ and a morphism

$$\pi: \mathbb{A}^3 \to \mathbb{A}^1$$

with the property that if $z \neq 0$, then $\pi^{-1}(z) \cap V$ is a union of two intersecting lines in \mathbb{A}^2_z , but $\pi^{-1}(0) \cap V$ is a union of two parallel lines in \mathbb{A}^2_0 .

12. (*) Let $V \subset \mathbb{A}^2$ be the union of the X-axis, Y-axis, and diagonal line X = Y. Calculate generators for I(V). Let $W \subset \mathbb{A}^3$ be the union of the X, Y and Z axes. Calculate generators for I(W). Show that V is not isomorphic to W.¹

Local Geometry. The final question is meant to give you some intuition, but is to be considered non-examinable.

13. Consider the polynomial $F = Y^2 - X^2(X + 1)$ and sketch the set of real solutions to the equation F = 0 in \mathbb{R}^2 . Call this set C. You may use a computer program to do this for you.

Let \mathbb{D}_{ϵ} be an open ball around (0,0) in \mathbb{R}^2 in the standard Euclidean topology of some small radius ϵ . Observe that $\mathbb{D}_{\epsilon} \cap C$ is homeomorphic to a union of two axes in \mathbb{R}^2 .

Consider the ring $\mathbb{C}[\![X,Y]\!]$ of formal power series in two variables. Prove that there exists an element G(X,Y) in this ring such that $G(X,Y)^2 = (1+X)$. Deduce that the element $Y^2 - X^2(X+1)$ can be factorized as:

$$Y^{2} - X^{2}(X+1) = (Y - XG)(Y + XG).$$

Note that G is an invertible element in this ring and meditate on the relationship between the two parts of this problem.

¹One path is as follows. If p is a point on V, let \mathfrak{m}_p be the set of elements in the coordinate ring that vanish at p. The quotient $\mathfrak{m}_p/\mathfrak{m}_p^2$ is a \mathbb{C} -vector space. What are the possible dimensions of this vector space for different choices of point p on V? How about on W?