ALGEBRAIC GEOMETRY, SHEET III: LENT 2020

Throughout this sheet, the symbol k will denote an algebraically closed field.

- 1. Let $\varphi : X \to Y$ be a morphism of algebraic varieties. Prove that the graph Γ_{φ} is a closed subset of the product $X \times Y$.
- 2. Assume (the true fact¹ that) the morphism $\pi : \mathbb{P}^n \times \mathbb{A}^m \to \mathbb{A}^m$ given by projection onto the second factor is a closed map of topological spaces. Prove that for X projective and Y quasi-projective the projection

$$X \times Y \to Y$$

is also a closed mapping. Deduce that the image of a projective variety is closed.

- 3. Using the ideas above prove that the only regular functions on a projective variety are constant functions.
- 4. Calculate the ring of all regular functions (i.e. everywhere defined morphisms $X \to \mathbb{A}^1$) on the quasi-projective variety $X = \mathbb{A}^2 \times \mathbb{P}^1$.
- 5. Let \mathcal{A} be a union of hyperplanes in \mathbb{P}^n be a collection of k > n hyperplanes in general position. Exhibit the complement $\mathbb{P}^n \setminus \mathcal{A}$ as a closed subvariety an algebraic torus, i.e. a product of copies of $\mathbb{G}_m = (k^*)$. (Start with n = 1 and $|\mathcal{A}| = 3$.)
- 6. Suppose that the characteristic of k is not equal to 2. Show that any irreducible smooth quadric in \mathbb{P}^n is birational to \mathbb{P}^{n-1} . If n = 3, prove that every such quadric is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.
- 7. Recall the blowup of \mathbb{A}^2 at the origin, defined in lecture²: $\pi : X \to \mathbb{A}^2$. The strict transform of a subvariety $Y \subset \mathbb{A}^2$ is defined as the closure of $\pi^{-1}(Y \setminus (0,0))$ inside X. Calculate the strict transform of the curve given by

$$Y = \mathbb{V}(y^2 - x^2(x+1)).$$

To see the geometry here, ask the internet to show you a graph the real points of this algebraic variety and remember that the blowup separated lines through the origin based on slope³.

8. Let d be a positive integer and (a_1, \ldots, a_n) be positive integers summing up to d. Construct a morphism of smooth curves $X \to \mathbb{P}^1$ such that the preimage of ∞ consists of exactly n points, with ramification indices given by a_1, \ldots, a_n . Let (b_i) be a vector of integers summing to 0. Construct a morphism $X \to \mathbb{P}^1$ having poles with orders given by the negative entries in b_i and zeros orders given by the positive ones.

Dhruv Ranganathan, dr508@cam.ac.uk

¹This fact is hard to prove but worth trying.

 $^{^{2}}$ If you don't have access to notes from the lecture, you can consult my colleague, Dr. Wikip Edia.

³This blowup has been lurking in the background. If you take 6 generically chosen points in \mathbb{P}^2 and blow them up you get an algebraic surface. One can show that every cubic surface has this form!

(Important lesson: It is easy to construct rational functions on \mathbb{P}^1 with prescribed zeroes and poles.)

- 9. Consider an affine plane curve $X = \mathbb{V}(f)$ for $f \in k[z_1, z_2]$ and let P be a smooth point. Show that $z_1 - z_1(P)$ is a local parameter at a smooth point if and only if $\partial f / \partial z_2(P) \neq 0$.
- 10. Let p be a smooth point on an irreducible curve X and let π be a local parameter. Prove that the dimension of $\mathcal{O}_{X,p}/\mathfrak{m}_p^n$ is equal to n for every positive integer n. Work this out explicitly when $X = \mathbb{A}^1$ and p = 0 and interpret the general case based on this.
- 11. We work in \mathbb{P}^2_k over a field of characteristic different from 2. Let $X_1 = \mathbb{V}(Z_0^8 + Z_1^8 + Z_2^8)$ and $X_2 = \mathbb{V}(Z_0^4 + Z_1^4 + Z_2^4)$ be curves. Show that each is smooth and irreducible. Let $\varphi: X_1 \to X_2$ be the morphism sending Z_i to Z_i^2 . Determine the degree of this morphism and compute the ramification indices for all points of X_1 .
- 12. (Elliptic curves are not rational Let $\lambda \in k \setminus \{0, 1\}$. Consider the cubic curve $E_{\lambda} \subset \mathbb{A}^2$ given by the equation

$$y^2 = x(x-1)(x-\lambda).$$

We will show that E_{λ} admits no non-constant rational maps $F : \mathbb{A}^1 \dashrightarrow E_{\lambda}$. (a) Write

$$F(t) = \left(\frac{f(t)}{g(t)}, \frac{p(t)}{q(t)}\right)$$

where the numerator-denominator pairs have no common factors. Conclude that

$$\frac{p^2}{q^2} = \frac{f(f-g)(f-\lambda g)}{g^3}$$

is an equality of fractions that cannot be simplified any further. Analyze the factorization into (linear) factors of both numerators and denominators. Conclude that $f, g, f - g, f - \lambda g$ must be perfect squares.

(b) Prove the following: If f, g are polynomials in k[t] such that there is a constant $\lambda \neq 0, 1$ for which $f, g, f - g, f - \lambda g$ are perfect squares, then f and g are constant. Use this to deduce that any rational map to E_{λ} from \mathbb{P}^1 is constant.

Note that when $\lambda = 1$ the associated curve becomes birational to \mathbb{P}^1 !

- 13. (*) (A general quartic contains no lines) Let $\mathbb{G} = G(2, 4)$ be the Grassmannian of linear 2-planes in k^4 , which you may assume is an algebraic variety. This is naturally identified with the set of lines in \mathbb{P}^3 . Let \mathbb{P} be the projective space of all quartic hypersurfaces, i.e. of nonzero homogeneous degree 4 polynomials in 4 variables, up to scalar.
 - (a) Find a quartic homogeneous polynomial in 4 variables whose associated hypersurface contains infinitely many lines.
 - (b) Let \mathcal{Y} be the subset of $\mathbb{P} \times \mathbb{G}$ given by

 $\mathcal{Y} = \{ (S, [\ell]) \in \mathbb{P} \times \mathbb{G} : \text{the line } \ell \text{ is contained in the surface } S \}$

Prove that \mathcal{Y} is a projective variety⁴.

⁴Hint: To do this, use the fact from the previous sheet that \mathbb{G} embeds in a projective space via the minors of a matrix. This embeds \mathcal{Y} into a product of projective spaces. In the coordinates on this space, what is the condition for ℓ to lie on S?

- (c) Consider the projections $p: \mathcal{Y} \to \mathbb{P}$ and $q: \mathcal{Y} \to \mathbb{G}$. Convince yourself that these are morphisms of algebraic varieties. Calculate the dimension of $q^{-1}([\ell])$. (d) Calculate the dimension of \mathbb{G} and use this to determine the dimension of \mathcal{Y} .

(e) Deduce that a generically chosen smooth quartic surface in \mathbb{P}^3 contains no lines. Notice the pattern: a plane in \mathbb{P}^3 has huge numbers of lines. A smooth quadric surface (i.e. $\mathbb{P}^1 \times \mathbb{P}^1$) has two families of lines, or two "rulings". A cubic surface has finitely many lines. A general quartic surface contains no lines.