ALGEBRAIC GEOMETRY, SHEET II: LENT 2020

Throughout this sheet, the symbol k will denote an algebraically closed field.

1. Let $X \subset \mathbb{P}^2$ be a projective variety. A morphism $\mathbb{P}^1 \to X$ is a polynomial map

$$\varphi([X_0:X_1]) = (f_0([X_0:X_1]), f_1([X_0:X_1]), f_2[(X_0:X_1]))$$

where f_i are homogeneous of the same degree, such that $f(\mathbb{P}^1) \subset X$. For any irreducible conic $C \subset \mathbb{P}^2$, there is a bijective morphism

$$\varphi: \mathbb{P}^1 \to C.$$

- 2. Let $X = \mathbb{V}(F)$ be a hypersurface in \mathbb{P}^n and let ℓ be a line, i.e. a subvariety defined by n-1 linearly independent linear homogeneous polynomials. Show that X intersects ℓ in a nonempty set.
- 3. A quasi-projective variety X (or simply a variety in this course) is a complement $Y \setminus W$ where Y is a projective variety and $W \subset Y$ is a (possibly empty) closed subvariety. Give examples of quasi-projective varieties that are neither affine nor projective. Prove that any quasi-projective variety X is covered by affine varieties.
- 4. Consider the morphism $\mathbb{A}^2 \to \mathbb{A}^2$ sending (x, y) to (x, xy). Prove that the image of this morphism is not quasi-projective.
- 5. Let $I \subset k[z_1, \ldots z_n]$ be an ideal. Let f_1, \ldots, f_r be generators for this ideal. Prove or give a counterexample to the following statement relating homogenizations of polynomials and ideals:

$$I^h = \langle f_1^h, \dots, f_r^h \rangle \subset k[Z_0, \dots, Z_n].$$

- 6. A collection of points in \mathbb{P}^n is said to be in *general position* if no subset of n+1 or fewer points is linear dependent (as vectors in k^{n+1}). If S is a collection of 2n points in \mathbb{P}^n , prove that S is the zero locus of a collection of quadratic polynomials.
- 7. Recall that the Segre surface $\Sigma_{1,1} \subset \mathbb{P}^3$ is given by $\mathbb{V}(Z_0Z_3 Z_1Z_2)$. Calculate the field of rational functions of $\Sigma_{1,1}$. Describe the set of all lines contained on this surface.
- 8. Consider the cubic surface $S \subset \mathbb{P}^3$ given by $\mathbb{V}(Z_0^3 + \ldots + Z_3^3)$. Find a line ℓ contained on this surface¹. Consider the collection of planes in \mathbb{P}^3 passing through this ℓ and describe the corresponding collection of equations for these planes. Given such a plane H containing ℓ , describe the curve $H \cap S$. Given a general plane in \mathbb{P}^3 (in particular, not necessarily containing ℓ) describe its intersection with S.
- 9. Construct two non-isomorphic irreducible cubic plane curves C_1 and C_2 in \mathbb{P}^2 , such that the fraction field of the coordinate rings of C_1 and C_2 are both isomorphic to k(z). Draw appropriate pictures.

Dhruv Ranganathan, dr508@cam.ac.uk

¹This is part of a famous geometry. A (smooth) cubic surface contains exactly 27 lines no matter what the equation is. Can you find the 27 lines in this case?

10. (Veronese varieties) Let $\{F_I\}$ be the set of degree d monomials in n + 1 variables Z_0, \ldots, Z_n . Consider the map

$$\nu_d: \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{d}-1}$$

sending a tuple $[Z_0 : \cdots : Z_n]$ to $[\cdots : F_I : \cdots]$, i.e. to the tuple of monomials of degree d. Find generators for the image of ν_d and prove that ν_d is an isomorphism onto its image.

11. Write down the projective closures of the following curves, determine the points at infinity, and find all singular points:

•
$$xy = x^6 + y^6$$
.

- $x^3 = y^2 + x^4 + y^4$
- $y^2 = f(x)$ with f(x) a polynomial of degree d.
- 12. (Dual projective space) Let V be a finite dimensional vector space. Prove that the set of hyperplanes in $\mathbb{P}(V)$ is naturally isomorphic to $\mathbb{P}(V^*)$, where V^* is the dual vector space. Using the fact that two distinct lines intersect at a unique point it \mathbb{P}^2 , deduce the fact that there is a unique line through two distinct points in \mathbb{P}^2 .
- 13. (Grassmannian) In this exercise, you will contemplate an important generalization of projective space known as the Grassmannian. Let V be an n-dimensional vector space and $0 \le k \le n$ an integer. Let G(k, V) be the set of k-dimensional linear subspaces of V.
 - (a) Consider k linearly independent vectors v_1, \ldots, v_k in V and choose a basis to represent them as a $k \times n$ matrix M. Observe that GL(k) acts on the set of such matrices by left multiplication without affecting the associated vector space. Prove that the $k \times k$ minors of such a matrix give rise to a well-defined map

$$\iota: G(k, V) \to \mathbb{P}^{\binom{n}{k}-1}.$$

- (b) Prove that ι is injective.
- (c) (*) Prove that the image of ι is Zariski closed. (Hint: Given a subspace W represented by a matrix M_W , you may assume that the first $k \times k$ block of M_W is the identity. The rest of M_W is a $k \times (n - k)$ matrix A. How are the maximal minors of M_W related to the minors of A? The minors of A satisfy relations coming from Laplace expansion. This gives you equations on an affine patch.)
- 14. Consider C a smooth curve given by the projective closure of an affine curve of the form $y^2 = f(x)$ over the complex numbers. Construct a morphism

$$\pi: C \to \mathbb{P}^{1}$$

such that at all but finitely many points q of \mathbb{P}^1 , the preimage $\pi^{-1}(q)$ consists of exactly two points².

15. (*) Let $d \ge 1$ be an integer and $C \subset \mathbb{P}^2_{\mathbb{C}}$ the union of a collection of d lines. Assume the lines are chosen generically. In the Euclidean topology in \mathbb{P}^2 , describe the topological space of C and draw a picture of it. Let f_d be a degree d homogeneous polynomial

²Given a morphism $C \to \mathbb{P}^1$, the number of preimages of a generic point on \mathbb{P}^1 is the *degree* of the map, which in this case will be 2.

in 3 variables, and assume the coefficients of f_d are chosen generically. Based on your analysis above, can you guess a description of the Euclidean topological space $\mathbb{V}(f_d)$? It may help you to carefully compare $\mathbb{V}(Z_0Z_1)$ and $\mathbb{V}(Z_0Z_1 - Z_2^2)$.