Algebraic Geometry

Example Sheet II, 2018

(For all questions, assume k is algebraically closed.)

- 1. Show that the simultaneous zeros of sets of homogeneous polynomials form the closed sets in a topology on \mathbf{P}^n . Show that the inclusion morphisms $\mathbf{A}^n \to \mathbf{P}^n$ from the complement of a hyperplane are continuous in this topology.
- 2. Prove the "homogeneous Nullstellensatz," which says that if $I \subseteq S = k[x_0, ..., x_n]$ is a homogeneous ideal and $f \in S$ is a homogeneous polynomial of degree greater than 0, and f(p) = 0 for all $p \in Z(I)$, then $f^q \in I$ for some q > 0. [Hint: Interpret this in the affine n + 1-space whose coordinate ring is S.]
- 3. For a subset $X \subseteq \mathbf{P}^n$, define the ideal of X, I(X), to be the ideal generated by homogeneous polynomials $f \in S$ such that f(p) = 0 for all $p \in X$. Let $I \subseteq S$ be a homogeneous ideal. Show that if X = Z(I) is non-empty, then $I(X) = \sqrt{I}$. [Hint: You will need to show that \sqrt{I} is generated by its homogeneous elements.] Show this may not be true if X is empty.
- 4. Show that if $I \subseteq k[x_0, ..., x_n] = S$ is a homogeneous prime ideal and $Z(I) \neq \emptyset$, then Z(I) is irreducible. Show that if $X \subseteq \mathbf{P}^n$ is an irreducible projective variety, then I(X) is prime.
- 5. Given distinct points P_0, \dots, P_{n+1} in \mathbf{P}^n , no (n+1) of which are contained in a hyperplane, show that homogeneous coordinates may be chosen on \mathbf{P}^n so that $P_0 = (1:0:\dots:0), \dots, P_n = (0:\dots:0:1)$ and $P_{n+1} = (1:1:\dots:1)$. [This generalises to arbitrary n a result you are very familiar with when n=1.]
- 6. Given hyperplanes H_0, \dots, H_n of \mathbf{P}^n such that $H_0 \cap \dots \cap H_n = \emptyset$, show that homogeneous coordinates x_0, \dots, x_n can be chosen on \mathbf{P}^n such that each H_i is defined by $x_i = 0$.
- 7. Let W be an n-dimensional vector space over k. Denote by $\mathbf{P}(W)$ the projective space $(W \setminus \{0\})/\sim$, where the equivalence relation is the usual rescaling. Show that the set of hyperplanes in $\mathbf{P}(W)$ is parametrized by $\mathbf{P}(W^*)$, where W^* is the dual vector space to W. If P_1, \dots, P_N are points of $\mathbf{P}(W)$, describe the set in $\mathbf{P}(W^*)$ corresponding to hyperplanes not containing any of the P_i . Deduce (using k infinite) that there are infinitely many such hyperplanes.
- 8. Let V be a hypersurface in \mathbf{P}^n defined by a non-constant homogeneous polynomial F, and L a (projective) line in \mathbf{P}^n , i.e., a subvariety of \mathbf{P}^n defined by n-1 linearly independent homogeneous linear equations. Show that V and L must intersect in a non-empty set.
- 9. Decompose the algebraic set V in ${\bf P^3}$ defined by equations $x_2^2=x_1x_3$, $x_0x_3^2=x_2^3$ into irreducible components.
- 10. Assume char $k \neq 2$.
 - i) Show that a homogeneous polynomial $F(x_0, x_1, x_2)$ of degree 2 can be written uniquely in the form $\mathbf{x}^T A \mathbf{x}$, where A is a 3×3 symmetric matrix with entries in k and $\mathbf{x}^T = (x_0, x_1, x_2)$; show that the polynomial is irreducible if and only if $\det(A) \neq 0$. Let $V \subset \mathbf{P}^2$ be the algebraic set defined by the equation F = 0, and assume F is irreducible and k algebraically closed. Show that you can choose coordinates such that $F = x_0^2 + x_1^2 + x_2^2$, and that V is isomorphic to \mathbf{P}^1 .
 - ii) In contrast, show that if $f(x,y) \in k[x,y]$ is an irreducible (non-homogeneous!) polynomial of degree 2, k algebraically closed, then Z(f) is isomorphic to either \mathbf{A}^1 or $\mathbf{A}^1 \setminus \{0\}$.
- 11. Consider the projective plane curves corresponding to the following affine curves in A^2 .

$$\begin{array}{ll} (a) \ y = x^3 & (b) \ xy = x^6 + y^6 \\ (c) \ x^3 = y^2 + x^4 + y^4 & (d) \ x^2y + xy^2 = x^4 + y^4 \\ (e) \ 2x^2y^2 = y^2 + x^2 & (f) \ y^2 = f(x) \ \text{with} \ f \ \text{a polynomial of degree} \ n. \end{array}$$

In each case, calculate the points at infinity of these curves, i.e., homogenize the equations to obtain equations for a curve in \mathbf{P}^2 and identify the resulting points at infinity. Furthermore, find the singular points of the affine curve. If you wish, you may make assumptions about the characteristic of k to simplify the analysis.

12. If $F(x_0, ..., x_n)$ is an irreducible homogeneous polynomial of degree d > 0, prove that $dF = \sum_{i=0}^n x_i \partial F / \partial x_i$. If F is irreducible, let $X = Z(F) \subset \mathbf{P}^n$ be the projective variety defined by F = 0. In lecture, we defined the notion of $p \in X$ being a non-singlar point of X if $p \in U$ is a non-singular point, for U an affine open neighbourhood of p in X. Assume $char\ k$ does not divide d. Using the standard open affine cover $\{U_i = \mathbf{P}^n \setminus Z(x_i)\}$ of \mathbf{P}^n , show that the singular locus of X (the set of points of X which are not non-singular) consists precisely of the points p in \mathbf{P}^n with $\partial F / \partial x_i(p) = 0$ for $i = 0, \ldots, n$. [Note: dF is $(\deg F) \cdot F$, not the differential of F!]

13. Let $F_0(X_0,\ldots,X_n),\ldots,F_m(X_0,\ldots,X_n)$ be homogeneous polynomials of degree d. Let $Z\subseteq \mathbf{P}^n$ be the subset of zeros of F_0,\ldots,F_m , and $U=\mathbf{P}^n\setminus Z$.

Recall from the handout the definition of an algebraic variety, and of a morphism of algebraic varieties.

- i) Show that U is an algebraic variety by covering it with affine opens, and that $F: p \mapsto [F_0(p): \ldots: F_m(p)]$ defines a morphism $U \to \mathbf{P}^m$.
- ii) Determine U if F([X:Y:Z]) = [YZ:XZ:XY]. What is the image of F?
- 14. Let $V \subset \mathbf{P}^2$ be defined by $X_1^2 X_2 = X_0^3$.
 - 1. Show that the formula $(u:v) \mapsto (u^2v:u^3:v^3)$ defines a morphism $\phi: \mathbf{P}^1 \to V$.
 - 2. Write down a morphism $\psi: U \to \mathbf{P}^1$, where $U = V \setminus \{(0:0:1)\}$ which coincides with ϕ^{-1} on U. What is the geometric interpretation of ψ ?
 - 3. Show that ψ is not defined at (0:0:1).
- 15 Let $V \subset \mathbf{P}^2$ be defined by $X_1^2 X_2 = X_0^2 (X_0 + X_2)$. Find a surjective morphism $\phi \colon \mathbf{P}^1 \to V$ such that, for $P \in V$, $\#\phi^{-1}(P) = 2$ if P = (0:0:1), and $\#\phi^{-1}(P) = 1$ otherwise. Is there a morphism $\psi \colon U \to \mathbf{P}^1$, where $U = V \setminus \{(0:0:1)\}$, which coincides with ϕ^{-1} on U?