Part II Algebraic Geometry

Example Sheet III, 2016

(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary.)

- 1. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $x_1x_2^2 x_3^3 \in k[x_0, \ldots, x_3]$. Find the dimension of the tangent space at all the singularities.
- 2. Let $f, g: X \to Y$ be morphisms between algebraic varieties, and suppose there is a non-empty open subset $U \subseteq X$ such that $f|_U = g|_U$. Show f = g. [Hint: First reduce to the case $Y = \mathbb{P}^n$, and show that the map $f \times g: X \to \mathbb{P}^n \times \mathbb{P}^n$ is a morphism, where $f \times g(x_1, x_2) = (f(x_1), g(x_2))$. Next consider the diagonal $\Delta = \{(y, y) \mid y \in \mathbb{P}^n\} \subseteq \mathbb{P}^n \times \mathbb{P}^n$.]
- 3. Let X and Y be algebraic varieties. Recall that in defining rational map, we considered pairs (U, f) where $U \subseteq X$ is an open subset and $f : U \to Y$ is a morphism. We defined a relation $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g|_{U \cap V}$. Show this relation is an equivalence relation.
- 4. Let M_1 be the matrix

$$\begin{pmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_1 & x_2 & \cdots & x_n \end{pmatrix}.$$

Show that the set of points

$$C := \{(a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \operatorname{rank} M_1(a_0, \ldots, a_n) = 1\}$$

is isomorphic to \mathbb{P}^1 . This embedding of \mathbb{P}^1 in \mathbb{P}^n is called the *rational normal curve*. You have already seen the special case n = 3, where the rational normal curve is called the twisted cubic.

Let M_2 be the matrix

$$\begin{pmatrix} x_0 & x_2 & \cdots & x_{n-1} \\ x_1 & x_3 & \cdots & x_n \end{pmatrix}.$$

Show that the set of points

$$X := \{ (a_0 : \cdots : a_n) \in \mathbb{P}^n \mid \operatorname{rank} M_1(a_0, \ldots, a_n) = 1 \}$$

has a map $f: X \to \mathbb{P}^1$ (you do not need to show this map is a morphism, but be sure you *think* it is a morphism), and that for $p \in \mathbb{P}^1$ we have $f^{-1}(p) \cong \mathbb{P}^1$. The variety X is called the *rational normal scroll*. (A variety X with a morphism $X \to Y$ all of whose fibres are projective lines is called a *scroll*; this is a particular example of a scroll.)

- 5. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2 x_2 = x_0^3$.
 - (a) Show that the formula $(u, v) \mapsto (u^2 v, u^3, v^3)$ defines a morphism $\phi : \mathbb{P}^1 \to V$.

- (b) Write down a rational map ψ : V → P¹, a morphism on U = V \{(0,0,1)} which is inverse to φ on U. What is the geometric interpretation of ψ?
 (c) Show that ψ does not extend to a morphism at (0, 0, 1)
- (c) Show that ψ does not extend to a morphism at (0,0,1).
- 6. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2 x_2 = x_0^2(x_0 + x_2)$. Find a surjective morphism $\phi : \mathbb{P}^1 \to V$ such that, for $P \in V$,

$$\#\phi^{-1}(P) = \begin{cases} 2 & \text{if } P = (0,0,1) \\ 1 & \text{otherwise} \end{cases}$$

Is there a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, a morphism on $U = V \setminus \{(0, 0, 1)\}$, which coincides with ϕ^{-1} on U?

7. Let V be the quadric $Z(x_0x_3 - x_1x_2) \subset \mathbb{P}^3$, and H the plane $x_0 = 0$. Let P = (1, 0, 0, 0). Show that $\phi = (0, x_1, x_2, x_3)$ defines a rational map $\phi: V \longrightarrow H$ such that for $Q \in V$, the line PQ meets H in $\phi(Q)$ whenever this is defined.

Let $V_1 = V \cap \{x_1 = x_2\}$ and $L = H \cap \{x_1 = x_2\}$. Verify explicitly that ϕ induces an isomorphism $V_1 \xrightarrow{\cong} L$.

- 8. Consider the birational map $\phi \colon \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ given by (x_1x_2, x_0x_2, x_0x_1) , and let $P_0 = (1, 0, 0), P_1 = (0, 1, 0)$ and $P_2 = (0, 0, 1)$ be the points, at which ϕ is not a morphism. Let $L \subset \mathbb{P}^2$ be a line. Show that ϕ gives a morphism $L \to \mathbb{P}^2$ such that:
 - (i) if $L \cap \{P_i\} = \emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^2 which passes through all of the $\{P_i\}$;
 - (ii) if L contains just one P_i then ϕ is an isomorphism of L with another line in \mathbb{P}^2

Determine the effect of ϕ on the cubic *C* with defining polynomial $x_0(x_1^2 + x_2^2) + x_1^2x_2 + x_1x_2^2$. (Assume char(k) $\neq 2$.) What happens to the singularity of *C*? Draw appropriate pictures.

9. (i) Let $\phi : X \to Y$ be a morphism of affine varieties. Using the definition of tangent space in terms of the derivatives of elements of the ideal, show that for all $p \in X$, there is a linear map

$$d\phi: T_pX \to T_{\phi(p)}Y.$$

- (ii) In the situation of (i), if ϕ is defined by an *m*-tuple of polynomials $(\Phi_1, \ldots, \Phi_m) \in A(X)^m$, write $d\phi$ in terms of the Φ_i .
- (iii) Now assume that X and Y are arbitrary varieties. Using the definition of Zariski tangent space, show (i) in this more general context. Show the your answer coincides with your answer in (i).
- 10. Let $Y \subseteq \mathbb{A}^3$ be the surface given by the equation $x_1^2 + x_2^2 + x_3^2 = 0$. Consider the blow-up $X \subseteq \mathbb{A}^3 \times \mathbb{P}^2$ of \mathbb{A}^3 , with $\varphi : X \to \mathbb{A}^3$ the projection and $E = \varphi^{-1}(0)$. Recall that the *proper transform* of Y is the closure of $\varphi^{-1}(Y) \setminus E$ in X. Describe the proper transform \tilde{Y} of Y. Describe the fibres of the map $\varphi|_{\tilde{Y}} : \tilde{Y} \to Y$. Show that \tilde{Y} is non-singular.