Part II

Algebraic Geometry

Example Sheet IV, 2016

(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary. A * indicates a more difficult problem.)

- 1. If P is a smooth point of an irreducible curve X and $t \in \mathcal{O}_{X,P}$ is a local parameter at P, show that $\dim_k \mathcal{O}_{X,P}/(t^n) = n$ for every $n \in \mathbb{N}$.
- 2. Show that $X = Z(x_0^8 + x_1^8 + x_2^8)$ and $Y = Z(y_0^4 + y_1^4 + y_2^4)$ are irreducible smooth curves in \mathbb{P}^2 provided char $(k) \neq 2$, and that $\phi: (x_i) \mapsto (x_i^2)$ is a morphism from X to Y. Determine the degree of ϕ , and compute e_P for all $P \in X$.
- 3. Show that the plane cubic $X=Z(f),\ f=x_0x_2^2-x_1^3+3x_1x_0^2$, is smooth if $\operatorname{char}(k)\neq 2,\ 3$. Find the degree and ramification degrees (i.e., the e_P) for (i) the projection $\phi=(x_0:x_1):X\to\mathbb{P}^1$ (ii) the projection $\phi=(x_0:x_2):X\to\mathbb{P}^1$.
- 4. (i) Let $\phi = (1:f): \mathbb{P}^1 \to \mathbb{P}^1$ be a morphism given by a nonconstant polynomial $f \in k[t] \subset K(\mathbb{P}^1)$. Show that $\deg(\phi) = \deg f$, and determine the ramification points of ϕ that is, the points $P \in \mathbb{P}^1$ for which $e_P > 1$. Do the same for a rational function $f \in k(t)$.
 - (ii) Assume the characteristic of k is 0. Let $\phi = (t^2 7 : t^3 10): \mathbb{P}^1 \to \mathbb{P}^1$. Compute $\deg(\phi)$ and e_P for all $P \in \mathbb{P}^1$.
 - (iii) Let $f, g \in k[t]$ be coprime polynomials with $\deg(f) > \deg(g)$, and $\operatorname{char}(k) = 0$. Assume that every root of f'g g'f is a root of fg. Show that g is constant and f is a power of a linear polynomial.
 - (iv) Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a finite morphism in characteristic zero. Suppose that every ramification point $P \in \mathbb{P}^1$ satisfies $\phi(P) \in \{0, \infty\}$. Show that $\phi = (F_0^n : F_1^n)$ for some linear forms F_i . [Hint: choose coordinates so that $\phi(0) = 0$ and $\phi(\infty) = \infty$.]
 - (v) Suppose char $(k) = p \neq 0$, and let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be given by $t^p t \in k(t)$. Show that ϕ has degree p and that it is only ramified at ∞ .
- 5. Let X be a non-singular projective curve. Let $V \subset K(X)$ be a finite-dimensional k-vector subspace of K(X). Show that there exists a divisor D on V for which $V \subset \mathcal{L}(D)$.
- 6. Let X be a smooth plane cubic. Assume that V has equation $x_0x_2^2 = x_1(x_1 x_0)(x_1 \lambda x_0)$, for some $\lambda \in k \setminus \{0, 1\}$.
 - Let P = (0:0:1) be the point at infinity in this equation. Writing $x = x_1/x_0$, $y = x_2/x_0$, show that x/y is a local parameter at P. [Hint: consider the affine

- piece $x_2 \neq 0$.] Hence compute $v_P(x)$ and $v_P(y)$. Show that for each $m \geq 1$, the space $\mathcal{L}(mP)$ has a basis consisting of functions x^i , x^jy , for suitable i and j, and that $\ell(mP) = m$.
- 7. Let $f \in k[x]$ a polynomial of degree d > 1 with distinct roots, and $V \subset \mathbb{P}^2$ the projective closure of the affine curve with equation $y^{d-1} = f(x)$. Assume that char(k) does not divide d-1. Prove that V is smooth, and has a single point P at infinity. Calculate $v_P(x)$ and $v_P(y)$.
 - * Deduce (without using Riemann–Roch) that if n > d(d-3), then $\ell((n+1)P) = \ell(nP) + 1$.
- 8. A non-singular projective curve X is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^2 = f(x)$ and $v^2 = g(u)$ respectively, with f a square-free polynomial of even degree 2n and u = 1/x, $v = y/x^n$ in K(X). Determine the polynomial g(u) and show that the canonical class on X has degree 2n 4. Why can we not just say that X is the projective plane curve associated to the affine curve $y^2 = f(x)$?
- 9. Let $X_0 \subset \mathbb{A}^2$ be the affine curve with equation $y^3 = x^4 + 1$, and let $X \subset \mathbb{P}^2$ be its projective closure. Show that X is smooth, and has a unique point Q at infinity. Let ω be the rational differential dx/y^2 on X. Show that $v_P(\omega) = 0$ for all $P \in X_0$. prove that $v_Q(\omega) = 4$ and hence that ω , $x\omega$ and $y\omega$ are all regular on X.
- 10. Let X be a non-singular projective curve and $P \in X$ any point. Show that there exists a nonconstant rational function on X which is regular everywhere except at P. Show moreover that there exists a projective embedding of X which has P as its unique point at infinity. If X has genus g, show that there exists a nonconstant morphism $X \to \mathbb{P}^1$ of degree g.
- 11. Let P_0 be a point on an elliptic curve (non-singular projective curve of genus 1!) and $\phi_{3P_0}: X \to \mathbb{P}^2$ the projective embedding. Show that $P \in X$ is a point of inflection if and only if 3P = 0 in the group law determined by P_0 . Deduce that if P and Q are points of inflection then so is the third point of intersection of the line PQ with X.
- 12. Let $\pi: X \to \mathbb{P}^1$ be a hyperelliptic cover, and $P \neq Q$ ramification points of π . Show that as elements of $Cl^0(X)$, $P Q \neq 0$ but 2(P Q) = 0.