Part II

Algebraic Geometry

Example Sheet III, 2016

(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary. A * indicates a more difficult problem.)

- 1. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $x_1x_2^2 - x_3^3 \in k[x_0, \dots, x_3]$. Find the dimension of the tangent space at all the
- 2. Consider $V = Z(I) \subset \mathbb{A}^3$ where I is generated by $x_1^3 x_3$ and $x_2^2 x_3$. Determine the points at which V is singular and compute the dimensions of the tangent
- 3. Let $f, g: X \to Y$ be morphisms between algebraic varieties, and suppose there is a non-empty open subset $U \subseteq X$ such that $f|_U = g|_U$. Show f = g. [Hint: First reduce to the case $Y = \mathbb{P}^n$, and show that the map $f \times g : X \to \mathbb{P}^n \times \mathbb{P}^n$ is a morphism, where $f \times g(x_1, x_2) = (f(x_1), g(x_2))$. Next consider the diagonal $\Delta = \{(y,y) \mid y \in \mathbb{P}^n\} \subseteq \mathbb{P}^n \times \mathbb{P}^n.$
- 4. Let X and Y be algebraic varieties. Consider the set of pairs (U, f) where $U\subseteq X$ is an open subset and $f:U\to Y$ is a morphism. Define a relation $(U,f) \sim (V,g)$ if $f|_{U\cap V} = g|_{U\cap V}$. Show this relation is an equivalence relation.

We define a rational map $f: X \longrightarrow Y$ between algebraic varieties to be an equivalence class of a pair (U, f).

A rational map $f: X \longrightarrow Y$ is birational if it admits a rational inverse, i.e., a rational map $g: Y \longrightarrow X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$ as rational maps, where id_Y denotes the rational map $(Y, id_Y): Y \longrightarrow Y$.

Show that the blow-up $\pi:X\to \mathbb{A}^n$ is a birational map.

- 5. Let $X = \{ \varphi : k^2 \to k^3 \mid \varphi \text{ is linear, but } not \text{ injective} \}.$
 - (a) Show X is a Zariski closed subvariety of \mathbb{A}^6 , hence an affine algebraic variety, and compute A(X).
 - (b) Find the singular points, if any, of X. Compute $d = \dim X$.
 - (c) Show there is a birational map α from X to \mathbb{A}^d .
- 6. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2 x_2 = x_0^3$. (a) Show that the formula $(u, v) \mapsto (u^2 v, u^3, v^3)$ defines a morphism $\phi : \mathbb{P}^1 \to \mathbb{P}^1$
 - (b) Write down a rational map $\psi: V \longrightarrow \mathbb{P}^1$, a morphism on $U = V \setminus \{(0,0,1)\}$ which is inverse to ϕ on U. What is the geometric interpretation of ψ ?
 - (c) Show that ψ does not extend to a morphism at (0,0,1).
- 7. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2x_2 = x_0^2(x_0 + x_2)$. Find a surjective morphism $\phi: \mathbb{P}^1 \to V$ such that, for $P \in V$,

$$\#\phi(P) = \begin{cases} 2 & \text{if } P = (0, 0, 1) \\ 1 & \text{otherwise} \end{cases}$$

- Is there a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, a morphism on $U = V \setminus \{(0,0,1)\}$, which coincides with ϕ^{-1} on U?
- 8. Let V be the quadric $Z(x_0x_3-x_1x_2)\subset \mathbb{P}^3$, and H the plane $x_0=0$. Let P=(1,0,0,0). Show that $\phi=(0,x_1,x_2,x_3)$ defines a rational map $\phi\colon V\longrightarrow H$ such that for $Q \in V$, the line PQ meets H in $\phi(Q)$ whenever this is defined. Let $V_1 = V \cap \{x_1 = x_2\}$ and $L = H \cap \{x_1 = x_2\}$. Verify explicitly that ϕ

- induces an isomorphism $V_1 \xrightarrow{\cong} L$. 9. Consider the birational map $\phi \colon \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ given by (x_1x_2, x_0x_2, x_0x_1) , and let $P_0 = (1,0,0), P_1 = (0,1,0)$ and $P_2 = (0,0,1)$ be the points, at which ϕ is not a morphism. Let $L \subset \mathbb{P}^2$ be a line. Show that ϕ gives a morphism $L \to \mathbb{P}^2$ such
 - (i) if $L \cap \{P_i\} = \emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^2 which passes through all of the $\{P_i\}$;
 - (ii) if L contains just one P_i then ϕ is an isomorphism of L with another line

Determine the effect of ϕ on the cubic C with defining polynomial $x_0(x_1^2+x_2^2)+$ $x_1^2x_2 + x_1x_2^2$. (Assume char $(k) \neq 2$.) What happens to the singularity of C? Draw appropriate pictures.

10. (a) Let $\phi: X \to Y$ be a morphism of affine varieties. Using the definition of tangent space in terms of the derivatives of elements of the ideal, show that for all $p \in X$, there is a linear map

$$d\phi: T_pX \to T_{\phi(p)}Y.$$

- (b) In the situation of (i), if ϕ is defined by an m-tuple of polynomials $(\Phi_1, \ldots, \Phi_m) \in$ $A(X)^m$, write $d\phi$ in terms of the Φ_i .
- (c) Now assume that X and Y are arbitrary varieties. Using the definition of Zariski tangent space, show (i) in this more general context. Show the your answer coincides with your answer in (i).
- 11. * Show that if V is an irreducible plane curve with equation $x_0x_2^2 = x_1^3 +$ ax₀²x₁ + bx₀³, then V is isomorphic to the variety W ⊂ P³ given by x₀x₃ = x₁², x₂² = x₁x₃ + ax₀x₁ + bx₀² via the map φ = (x₀², x₀x₁, x₀x₂, x₁²).
 12. Let Y ⊆ A³ be the surface given by the equation x₁² + x₂² + x₃² = 0. Consider the blow-up X ⊆ A³ × P² of A³, with φ: X → A³ the projection and E = φ⁻¹(0).
- Recall that the proper transform of Y is the closure of $\varphi^{-1}(Y) \setminus E$ in X. Describe the proper transform \tilde{Y} of Y. Describe the fibres of the map $\varphi|_{\tilde{Y}}: \tilde{Y} \to Y$. Show that \tilde{Y} is non-singular.