
Part II Algebraic Geometry

Example Sheet II, 2016
(For all questions, assume k is algebraically closed.)

1. Show that the set of algebraic subsets of Pn forms a topology on P
n.

2. Prove the “homogeneous Nullstellensatz,” which says that if I ⊆ S = k[x0, . . . , xn] is a homogeneous ideal and
f ∈ S is a homogeneous polynomial of degree greater than 0, and f(p) = 0 for all p ∈ Z(I), then f q ∈ I for
some q > 0. [Hint: Interpret this in the affine n+ 1-space whose coordinate ring is S.]

3. For a subset X ⊆ P
n, define the ideal of X , I(X), to be the ideal generated by homogeneous polynomials f ∈ S

such that f(p) = 0 for all p ∈ X . Let I ⊆ S be a homogeneous ideal. Show that if X = Z(I) is non-empty, then
I(X) =

√
I. [Hint: You will need to show that

√
I is generated by its homogeneous elements.]

Show this may not be true if X is empty.

4. Show that if I ⊆ k[x0, . . . , xn] = S is a homogeneous prime ideal and Z(I) 6= ∅, then Z(I) is irreducible.

5. Given distinct points P0, · · · , Pn+1 in P
n, no (n + 1) of which are contained in a hyperplane, show that homo-

geneous coordinates may be chosen on P
n so that P0 = (1: 0: . . . : 0), · · · , Pn = (0: . . . : 0: 1) and

Pn+1 = (1: 1: . . . : 1). [This generalises to arbitrary n a result you are very familiar with when n = 1.]

6. Given hyperplanes H0, · · · , Hn of Pn such that H0∩· · ·∩Hn = ∅, show that homogeneous coordinates x0, . . . , xn

can be chosen on P
n such that each Hi is defined by xi = 0.

7. Let W be an n-dimensional vector space over k. Denote by P(W ) the projective space (W \ {0})/ ∼, where
the equivalence relation is the usual rescaling. Show that the set of hyperplanes in P(W ) is parametrized by
P(W ∗), where W ∗ is the dual vector space to W . If P1, · · · , PN are points of P(W ), describe the set in P(W ∗)
corresponding to hyperplanes not containing any of the Pi. Deduce (using k infinite) that there are infinitely
many such hyperplanes.

8. Let V be a hypersurface in P
n defined by a non-constant homogeneous polynomial F , and L a (projective) line

in P
n, i.e., a subvariety of Pn defined by n− 1 linearly independent homogeneous linear equations. Show that

V and L must intersect in a non-empty set.

9. LetX be an algebraic set (in affine or projective space), and suppose thatX = X1∪· · ·∪Xn andX = X ′

1∪· · ·∪X ′

m

are two decompositions into irreducible components, such that Xi 6⊆ Xj for any i 6= j, and X ′

i 6⊆ X ′

j for any
i 6= j. Show that n = m and after reordering, Xi = X ′

i. Thus irreducible decompositions are essentially unique.

10. Decompose the algebraic set V in P
3 defined by equations x2

2 = x1x3 , x0x
2
3 = x3

2 into irreducible components.

11. Assume char k 6= 2.

i) Show that a homogeneous polynomial F (x0, x1, x2) of degree 2 can be written uniquely in the form x
TAx,

where A is a 3 × 3 symmetric matrix with entries in k and x
T = (x0, x1, x2); show that the polynomial is

irreducible if and only if det(A) 6= 0. Let V ⊂ P
2 be the algebraic set defined by the equation F = 0; if V is

irreducible and k algebraically closed, show that you can choose coordinates such that F = x2
0 + x2

1 + x2
2, and

that V is isomorphic to P
1.

ii) In contrast, show that if f(x, y) ∈ k[x, y] is an irreducible (non-homogeneous!) polynomial of degree 2, k
algebraically closed, then Z(f) is isomorphic to either A1 or A1 \ {0}.

12. Consider the projective plane curves corresponding to the following affine curves in A
2.

(a) y = x3 (b) xy = x6 + y6

(c) x3 = y2 + x4 + y4 (d) x2y + xy2 = x4 + y4

(e) 2x2y2 = y2 + x2 (f) y2 = f(x) with f a polynomial of degree n.

In each case, calculate the points at infinity of these curves, i.e., homogenize the equations to obtain equations for
a curve in P

2 and identify the resulting points at infinity. Furthermore, find the singular points of the projective
curve. If you wish, you may make assumptions about the characteristic of k to simplify the analysis.

13. If F (x0, . . . , xn) a homogeneous polynomial of degree d > 0, prove that dF =

n∑

i=0

xi ∂F/∂xi. If F is irreducible,

let X = Z(F ) ⊂ P
n be the projective variety defined by F = 0. In lecture, we defined the notion of p ∈ X being

a non-singlar point of X if p ∈ U is a non-singular point, for U an affine open neighbourhood of p in X . Using
the standard open affine cover {Ui = P

n \Z(xi)} of Pn, show that the the singular locus of X (the set of points
of X which are not non-singular) consists precisely of the points p in P

n with ∂F/∂xi(p) = 0 for i = 0, . . . , n.


