Part II

Algebraic Geometry

Example Sheet II, 2016

(For all questions, assume k is algebraically closed.)

- 1. Show that the set of algebraic subsets of \mathbf{P}^n forms a topology on \mathbf{P}^n .
- 2. Prove the "homogeneous Nullstellensatz," which says that if $I \subseteq S = k[x_0, \ldots, x_n]$ is a homogeneous ideal and $f \in S$ is a homogeneous polynomial of degree greater than 0, and f(p) = 0 for all $p \in Z(I)$, then $f^q \in I$ for some q > 0. [Hint: Interpret this in the affine n + 1-space whose coordinate ring is S.]
- 3. For a subset $X \subseteq \mathbf{P}^n$, define the ideal of X, I(X), to be the ideal generated by homogeneous polynomials $f \in S$ such that f(p) = 0 for all $p \in X$. Let $I \subseteq S$ be a homogeneous ideal. Show that if X = Z(I) is non-empty, then $I(X) = \sqrt{I}$. [Hint: You will need to show that \sqrt{I} is generated by its homogeneous elements.] Show this may not be true if X is empty.
- 4. Show that if $I \subseteq k[x_0, \ldots, x_n] = S$ is a homogeneous prime ideal and $Z(I) \neq \emptyset$, then Z(I) is irreducible.
- 5. Given distinct points P_0, \dots, P_{n+1} in \mathbf{P}^n , no (n+1) of which are contained in a hyperplane, show that homogeneous coordinates may be chosen on \mathbf{P}^n so that $P_0 = (1:0:\ldots:0), \dots, P_n = (0:\ldots:0:1)$ and $P_{n+1} = (1:1:\ldots:1)$. [This generalises to arbitrary n a result you are very familiar with when n = 1.]
- 6. Given hyperplanes H_0, \dots, H_n of \mathbf{P}^n such that $H_0 \cap \dots \cap H_n = \emptyset$, show that homogeneous coordinates x_0, \dots, x_n can be chosen on \mathbf{P}^n such that each H_i is defined by $x_i = 0$.
- 7. Let W be an n-dimensional vector space over k. Denote by $\mathbf{P}(W)$ the projective space $(W \setminus \{0\}) / \sim$, where the equivalence relation is the usual rescaling. Show that the set of hyperplanes in $\mathbf{P}(W)$ is parametrized by $\mathbf{P}(W^*)$, where W^* is the dual vector space to W. If P_1, \dots, P_N are points of $\mathbf{P}(W)$, describe the set in $\mathbf{P}(W^*)$ corresponding to hyperplanes not containing any of the P_i . Deduce (using k infinite) that there are infinitely many such hyperplanes.
- 8. Let V be a hypersurface in \mathbf{P}^n defined by a non-constant homogeneous polynomial F, and L a (projective) line in \mathbf{P}^n , i.e., a subvariety of \mathbf{P}^n defined by n-1 linearly independent homogeneous linear equations. Show that V and L must intersect in a non-empty set.
- 9. Let X be an algebraic set (in affine or projective space), and suppose that $X = X_1 \cup \cdots \cup X_n$ and $X = X'_1 \cup \cdots \cup X'_m$ are two decompositions into irreducible components, such that $X_i \not\subseteq X_j$ for any $i \neq j$, and $X'_i \not\subseteq X'_j$ for any $i \neq j$. Show that n = m and after reordering, $X_i = X'_i$. Thus irreducible decompositions are essentially unique.
- 10. Decompose the algebraic set V in \mathbf{P}^3 defined by equations $x_2^2 = x_1 x_3$, $x_0 x_3^2 = x_2^3$ into irreducible components.
- 11. Assume char $k \neq 2$.

i) Show that a homogeneous polynomial $F(x_0, x_1, x_2)$ of degree 2 can be written uniquely in the form $\mathbf{x}^T A \mathbf{x}$, where A is a 3 × 3 symmetric matrix with entries in k and $\mathbf{x}^T = (x_0, x_1, x_2)$; show that the polynomial is irreducible if and only if det $(A) \neq 0$. Let $V \subset \mathbf{P}^2$ be the algebraic set defined by the equation F = 0; if V is irreducible and k algebraically closed, show that you can choose coordinates such that $F = x_0^2 + x_1^2 + x_2^2$, and that V is isomorphic to \mathbf{P}^1 .

ii) In contrast, show that if $f(x, y) \in k[x, y]$ is an irreducible (non-homogeneous!) polynomial of degree 2, k algebraically closed, then Z(f) is isomorphic to either \mathbf{A}^1 or $\mathbf{A}^1 \setminus \{0\}$.

12. Consider the projective plane curves corresponding to the following affine curves in \mathbf{A}^2 .

(a)
$$y = x^3$$
 (b) $xy = x^6 + y^6$
(c) $x^3 = y^2 + x^4 + y^4$ (d) $x^2y + xy^2 = x^4 + y^4$
(e) $2x^2y^2 = y^2 + x^2$ (f) $y^2 = f(x)$ with f a polynomial of degree n.

In each case, calculate the points at infinity of these curves, i.e., homogenize the equations to obtain equations for a curve in \mathbf{P}^2 and identify the resulting points at infinity. Furthermore, find the singular points of the projective curve. If you wish, you may make assumptions about the characteristic of k to simplify the analysis.

13. If $F(x_0, \ldots, x_n)$ a homogeneous polynomial of degree d > 0, prove that $dF = \sum_{i=0}^n x_i \partial F / \partial x_i$. If F is irreducible,

let $X = Z(F) \subset \mathbf{P}^n$ be the projective variety defined by F = 0. In lecture, we defined the notion of $p \in X$ being a non-singlar point of X if $p \in U$ is a non-singular point, for U an affine open neighbourhood of p in X. Using the standard open affine cover $\{U_i = \mathbf{P}^n \setminus Z(x_i)\}$ of \mathbf{P}^n , show that the the singular locus of X (the set of points of X which are not non-singular) consists precisely of the points p in \mathbf{P}^n with $\partial F/\partial x_i(p) = 0$ for $i = 0, \ldots, n$.