Part II Algebraic geometry

Example Sheet I, 2016

In all problems, you may assume that we are working over an algebraically closed field k.

- 1. Let $X \subseteq \mathbf{A}^n$ be an affine variety. Show, as discussed in lecture, that the two notions of regular function agree, i.e., $A(X) = \mathcal{O}_X(X)$. [Hint: You will need the Hilbert Nullstellensatz.]
- 2. Let $Y \subseteq \mathbf{A}^2$ be the curve given by xy = 1. Show that Y is not isomorphic to \mathbf{A}^1 . Find all morphisms $\mathbf{A}^1 \to Y$ and $Y \to \mathbf{A}^1$.
- 3. Let $Y \subseteq \mathbf{A}^3$ be the set $\{(t, t^2, t^3) \mid t \in k\}$. Show that Y is an affine variety, determine I(Y), and show that A(Y) is a polynomial ring in one variable. Y is called the twisted cubic.
- 4. Let $Y = Z(x^2 yz, xz x)$. Show that Y has 3 irreducible components. Describe them, and their corresponding prime ideals.
- 5. Show that any non-empty open subset of an irreducible algebraic set (i.e., a variety) is dense. Show that if an affine variety is Hausdorff, it consists of a single point.

Recall a basis for a topological space X is a collection \mathcal{U} of open subsets of X such that (1) for every $x \subseteq X$, there is a $U \in \mathcal{U}$ with $x \in U$ and (2) for every $U_1, U_2 \in \mathcal{U}$ and $x \in U_1 \cap U_2$, there is a $U_3 \in \mathcal{U}$ such that $x \in U_3 \subseteq U_1 \cap U_2$. Show that if X is an affine variety, then the collection of open sets $\{X \setminus Z(f) \mid f \in A(X)\}$ forms a basis for the topology of X.

- 6. A topological space is called *Noetherian* if it satisfies the descending chain condition for closed subsets. Show that affine varieties are Noetherian in the Zariski topology.
- 7. Show that if $X \subseteq \mathbf{A}^n$, $Y \subseteq \mathbf{A}^m$ are affine varieties, then $X \times Y \subseteq \mathbf{A}^n \times \mathbf{A}^m = \mathbf{A}^{n+m}$ is a Zariski closed subset of \mathbf{A}^{n+m} . The more ambitious may try to show that $X \times Y$ is irreducible, but a similar result will be proved in lecture.
- 8. Let $Y \subseteq \mathbf{A}^3$ be the set $\{(t^3, t^4, t^5) | t \in k\}$. Show that Y is an affine variety, and determine I(Y). Show I(Y) cannot be generated by two elements.
- 9. Suppose the characteristic of k is not 2. Show that there are no non-constant morphisms from \mathbf{A}^1 to $E = Z(y^2 x^3 + x) \subseteq \mathbf{A}^2$. [Hint: Consider the map $A(E) \to A(\mathbf{A}^1) = k[t]$, and the images of x and y under this map. Then use the fact that k[t] is a UFD.]

- 10. Let $f \in k[x_1, ..., x_n]$ be an irreducible polynomial, and consider $Y = Z(yf-1) \subseteq \mathbf{A}^{n+1}$, with coordinates $x_1, ..., x_n, y$. Show that Y is irreducible. Show that the projection $\mathbf{A}^{n+1} \to \mathbf{A}^n$ given by $(x_1, ..., x_n, y) \mapsto (x_1, ..., x_n)$ induces a morphism $Y \to \mathbf{A}^n$ which is a homeomorphism to its image $D(f) := \{(a_1, ..., a_n) \in \mathbf{A}^n \mid f(a_1, ..., a_n) \neq 0\}$. This gives the Zariski open set D(f) the structure of an algebraic variety.
- 11. Show that $G = GL_n(k)$ is an affine variety, and that the multiplication and inverse maps are morphisms of algebraic varieties. We say G is an affine algebraic group.
- 12. Let $Mat_{n,m}$ be the set of n by m matrices with coefficients in k; this set can be identified with \mathbf{A}^{nm} in the obvious way.
 - a) Show that the set of 2×3 matrices of rank ≤ 1 is an algebraic set.
 - b) Show that the matrices in $Mat_{n,m}$ of rank $\leq r$ is an algebraic set.
- 13. Let $f, g \in k[x, y]$ be polynomials, and suppose f and g have no common factor. Show there exists $u, v \in k[x, y]$ such that uf + vg is a non-zero polynomial in k[x].

Now let $f \in k[x, y]$ be irreducible. The variety Z(f) is called an affine plane curve. Show that any proper subvariety of Z(f) is finite.

- 14. Let A be a k-algebra. We say A is *finitely generated* if there is a surjective k-algebra homomorphism $k[x_1, \ldots, x_n] \to A$ for some n. Now suppose that A is a finitely generated k-algebra which is also an integral domain. Show that there is an affine variety Y with A isomorphic to A(Y) as k-algebras.
- 15. Let $G = \mathbf{Z}/2\mathbf{Z}$ act on k[x.y] by sending $x \mapsto -x$, $y \mapsto -y$. Show that the algebra of invariants $k[x,y]^G$ (the subring of polynomials left fixed by this action) defines an affine subvariety X of \mathbf{A}^3 by explicitly computing this ring of invariants. X is called the *rational double point*.

What is the relation of the points of X to the orbits of G acting on A^2 ?