Part II Algebraic Geometry

Example Sheet III, 2015

(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary. A * indicates a more difficult problem.)

- 1. Determine the radical of the following ideals
 - i) $(xy^3, x(x-y)) \subset k[x, y]$
 - ii) $(xy^3, x^2(y-3)) \subset k[x, y]$
 - iii) $(x^2(y-z), xy(y-z), xz(y-z)^2) \subset k[x, y, z]$
- 2. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $x_1x_2^2 x_3^3 \in k[x_0, \ldots, x_3]$. Find the dimension of the tangent space at all the singularities.
- 3. Consider $V = Z(I) \subset \mathbb{A}^3$ where I is generated by $x_1^3 x_3$ and $x_2^2 x_3$. Determine the points at which V is singular and compute the dimensions of the tangent spaces there.
- 4. Let $X = \{ \varphi : k^2 \to k^3 \mid \varphi \text{ is linear, but } not \text{ injective} \}.$
 - (a) Show X is a Zariski closed subvariety of \mathbb{A}^6 , hence an affine algebraic variety, and compute A(X).
 - (b) Find the singular points, if any, of X. Compute $d = \dim X$.
 - (c) Show there is a birational map α from X to \mathbb{A}^d .
- 5. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2 x_2 = x_0^3$.
 - (a) Show that the formula $(u, v) \mapsto (u^2 v, u^3, v^3)$ defines a morphism $\phi : \mathbb{P}^1 \to V$.
 - (b) Write down a rational map $\psi: V \longrightarrow \mathbb{P}^1$, a morphism on $U = V \setminus \{(0, 0, 1)\}$ which is inverse to ϕ on U. What is the geometric interpretation of ψ ?
 - (c) Show that ψ does not extend to a morphism at (0, 0, 1).
- 6. Let $V \subset \mathbb{P}^2$ be defined by $x_1^2 x_2 = x_0^2(x_0 + x_2)$. Find a surjective morphism $\phi : \mathbb{P}^1 \to V$ such that, for $P \in V$,

$$\#\phi(P) = \begin{cases} 2 & \text{if } P = (0,0,1) \\ 1 & \text{otherwise} \end{cases}$$

Is there a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, a morphism on $U = V \setminus \{(0, 0, 1)\}$, which coincides with ϕ^{-1} on U?

7. Let V be the quadric $Z(x_0x_3 - x_1x_2) \subset \mathbb{P}^3$, and H the plane $x_0 = 0$. Let P = (1, 0, 0, 0). Show that $\phi = (0, x_1, x_2, x_3)$ defines a rational map $\phi: V \to H$ such that for $Q \in V$, the line PQ meets H in $\phi(Q)$ whenever this is defined. *Show that ϕ is not a morphism.

Let $V_1 = V \cap \{x_1 = x_2\}$ and $L = H \cap \{x_1 = x_2\}$. Verify explicitly that ϕ induces an isomorphism $V_1 \xrightarrow{\cong} L$. 8. Consider the birational map $\phi \colon \mathbb{P}^2 \to \mathbb{P}^2$ given by (x_1x_2, x_0x_2, x_0x_1) , and let

8. Consider the birational map $\phi \colon \mathbb{P}^2 \to \mathbb{P}^2$ given by (x_1x_2, x_0x_2, x_0x_1) , and let $P_0 = (1, 0, 0), P_1 = (0, 1, 0)$ and $P_2 = (0, 0, 1)$ be the points, at which ϕ is not a

morphism. Let $L \subset \mathbb{P}^2$ be a line. Show that ϕ gives a morphism $L \to \mathbb{P}^2$ such that:

- (i) if $L \cap \{P_i\} = \emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^2 which passes through all of the $\{P_i\}$;
- (ii) if L contains just one P_i then ϕ is an isomorphism of L with another line in \mathbb{P}^2

Determine the effect of ϕ on the cubic C with defining polynomial $x_0(x_1^2 + x_2^2) + x_1^2x_2 + x_1x_2^2$. (Assume char $(k) \neq 2$.) What happens to the singularity of C? Draw appropriate pictures.

- 9. Let $\phi: X \to Y$ be a morphism of affine varieties.
 - (a) Show that for all $p \in X$, there is a linear map

$$d\phi: T_p X \to T_{\phi(p)} Y.$$

- (b) If ϕ is defined by an *m*-tuple of polynomials $(\Phi_1, \ldots, \Phi_m) \in k[X]^m$, write $d\phi$ in terms of the Φ_i .
- 10. In this question, we will show that 'the generic hypersurface is smooth' that is, that the set of smooth hypersurfaces of degree d is dense in the variety of all hypersurfaces of degree d in \mathbb{A}^n .

Let $n, d \ge 1$, and let

$$X = \{ f \in k[x_1, \dots, x_n] \mid \deg f \le d \},\$$

and

$$Z = \left\{ (f, p) \in X \times \mathbb{A}^n \middle| \begin{array}{l} f(p) = 0 \text{ and } k[x_1, \dots, x_n]/(f) \text{ is not the ring} \\ \text{of functions of a closed set which is smooth at } p \end{array} \right\}.$$

(This is somewhat clumsy phrasing!)

- (a) Show $X \simeq \mathbb{A}^N$ for some N [you need not determine N] and that Z is a Zariski closed subvariety of $X \times \mathbb{A}^n$.
- (b) Show that the fibers of the projection map $Z \to \mathbb{A}^n$ are linear subspaces of dimension N (n+1).
 - Conclude that $\dim Z = N 1 < \dim X$.
- (c) Hence show that $\{f \in X \mid \deg f = d, Z(f) \text{ smooth }\}$ is dense in X. [Given your current state of knowledge about dimension, hand-waving about dimension calculations is acceptable at this point.]
- 11. * Show that if V is an irreducible plane curve with equation $x_0x_2^2 = x_1^3 + ax_0^2x_1 + bx_0^3$, then V is isomorphic to the variety $W \subset \mathbb{P}^3$ given by $x_0x_3 = x_1^2$, $x_2^2 = x_1x_3 + ax_0x_1 + bx_0^2$ via the map $\phi = (x_0^2, x_0x_1, x_0x_2, x_1^2)$.