AN ALGEBRAIC VARIETY IS A SIMPLICIAL AFFINE VARIETY.

In this handout, we'll define an *arbitrary* algebraic variety as something built out of affine algebraic varieties by glueing. This is an easy special case of a general notion, and it's only this special case we'll explain. The definition of a variety is easy; the definition of a morphism is a little more subtle.

VARIETIES

First suppose given a topological space X, and open sets U_1, \ldots, U_N of X such that the U_i cover X, i.e. $X = \bigcup_i U_i$.

Put $U_{ij} = U_i \cap U_j = U_{ji}$, and let $\phi_{ij} : U_{ij} \to U_i$ be the inclusion map. This is an open inclusion.

Write $U_{\cdot} = \coprod U_i, U_{\cdot} = \coprod U_{ij}$, and $U_{\cdot} \rightrightarrows U_{\cdot}$ as shorthand for this data. It may be helpful to notice $U_{\cdot} = U_{\cdot} \times_X U_{\cdot}$.

We can recover X from this data, by glueing:

$$X = (\coprod U_i) / \sim,$$

where $\phi_{ij}(u) \sim \phi_{ji}(u)$, for all $u \in U_{ij}$.

This makes sense for any maps $U_{..} \rightrightarrows U_{.}$, and defines a sensible topological space X, as long as \sim really is an equivalence relation, i.e. providing the maps

$$U_{ijk} := U_i \cap U_j \cap U_k \to U_i \cap U_j \to U_i, \qquad U_{ijk} := U_i \cap U_j \cap U_k \to U_i \cap U_k \to U_i$$

are the same for all i, j, k.

Now, we can take this as the definition of an algebraic variety, by requiring that each of the spaces U_i , U_{ij} , U_{ijk} is a an affine variety, and that each of the maps $\phi_{ij}: U_{ij} \to U_i$, ϕ_{ijk} is an open inclusion (and in particular a morphism) of affine varieties,

We say that the data $\phi: U_{..} \rightrightarrows U_{.}$ defining X is a *presentation* of X.

Notice that nothing stops us from glueing the underlying sets U_i , with their Zariski toplogies, to get a topological space X. The additional 'algebraic' structure on X is encoded in the definition of a morphism.

Morphisms

Now, let $\phi : U_{..} \Rightarrow U_{.}$ be a presentation of X, and $\psi : V_{..} \Rightarrow V_{.}$ a presentation of Y, X and Y two algebraic varieties. To define a morphism of varieties is to define a morphism of presentations.

However, a map $f: X \to Y$ need not take one presentation to another. That is, it will often be the case that for some *i*, there is no *j* with $f(U_i) \subseteq V_j$. Nonetheless, sometimes we're lucky, and our map *f* really does preserve the cover.

Such maps are good, because we can insist $f|_{U_i} : U_i \to V_j$ is a morphism of affine varieties. Call such an f a "strict morphism".

Here is a definition of a strict morphism which doesn't mention the glued space X, and is written purely in terms of the presentation. (Rather than read it, it might be a better exercise to just invent it yourself).

A strict morphism $f: U_i \to V_i$ is a strict morphism $f: \{1, \ldots, n\} \to \{1, \ldots, m\}$, and morphisms $f_i: U_i \to V_{Fi}, f_{ij}: U_{ij} \to V_{Fi,Fj}$ of affine varieties such that for all $i, j, f_i\phi_{ij} = \psi_{Fi,Fj}f_{ij}$, and $f_{ij} = f_{ji}$.

So a strict morphism defines a map $f: X \to Y$ which preserves the presentations. It is clear how to compose strict morphisms. You should check that a strict morphism always defines a continuous map $f: X \to Y$.

A particular example of a strict morphism is a *refinement*, which is a strict morphism such that i) each f_i is a Zariski open embedding, ii) for all $j, \bigcup_{i:F(i)=j} f_i(U_i) = V_j$, and iii) $U_{ij} := U_i \cap U_j \simeq f_i U_i \cap f_j U_j \subseteq V_{Fi} \cap V_{Fj} = V_{FiFJ}$.

For example, if X = V is affine, a refinement $f : U \to X$ is just a presentation of V. In general a refinement of V is a presentation of each component V_j of V, that is, just a presentation of the disconnected affine variety V

For a concrete example, take $X = \mathbf{A}^1$, and $U_i = \mathbf{A}^1 \setminus \{p_i\}$, for distinct points p_1, \ldots, p_n of \mathbf{A}^1 .

Now we want to define morphisms of algebraic varieties by considering refinements to be isomorphisms, and "formally adding their inverses" to the category. What that means here is:

Definition. A morphism $F: U_{\cdot} \to V_{\cdot}$ is a pair of a refinement $\alpha: W_{\cdot} \to U_{\cdot}$, and strict morphism $f: W_{\cdot} \to V_{\cdot}$.

If both α , f are refinements, then swapping the roles of α , f we get a morphism $G: V \to U$. Call such morphisms "simultaneous refinements".

Exercise. Define composition of morphisms, and show that the isomorphisms are precisely the morphisms for which both α and f are refinements.

Finally, we note that we're only interested in studying varieties up to isomorphism that is we consider a refinement (of a cover of) the variety to be the same variety.

Definition. Let X be an algebraic variety, given by a presentation $U_{..} \rightrightarrows U_{..}$ Say U'. is an affine cover of X if there is a simultaneous refinement morphism $U'_{..} \rightarrow U_{..}$

So every affine cover of X defines a presentation of the variety X; all of these presentations are equally good.

Here is a concrete example. If H_0, \ldots, H_n are distinct hyperplanes with $\cap H_i = 0$ in a n + 1-dimensional vector space V, then the sets $U_i = \mathbf{P}V \setminus \mathbf{P}H_i$ define a presentation of $\mathbf{P}V$. Show that if H'_0, \ldots, H'_i are another such tuple of hyperplanes, then $U'_i = \mathbf{P}V \setminus \mathbf{P}H'_i$ defines an affine cover of $\mathbf{P}V$.

To see that we haven't done anything unexpected to morphisms of affine varieties, do the following easy

Exercise. If U. is a presentation of X, V. a presentation of Y, and $F : X \to Y$ is a morphism of varieties in this sense, and X and Y are affine varieties, show F determines uniquely a morphism of affine varieties, and conversely.

This data of a morphism isn't quite as horrible as it looks.

If you're give a map of sets $f: X \to Y$, f being continuous is a *property* of the map f.

Similarly, when given a map of sets $f : X \to Y$, where X and Y are algebraic varieties, then the property of f coming from a morphism is a property of the map of sets f, as the following attempts to show.

Exercise. i) A morphism $F: X \to Y$ of varieties has the property that for every affine cover V_i of Y, $f^{-1}(V_j)$ is an open subset of X, and an algebraic variety, and there exists an affine cover U(j) of $f^{-1}(V_j)$ such that $U_i = \coprod U(j)$ is an affine cover of X and $U_i \to V_i$ is a strict morphism.

ii) If X and Y are algebraic varieties, a map of sets $f : X \to Y$ is a morphism if there is some affine cover V_i of Y and affine cover U_i of X which makes f a strict morphism.

You should take part (ii) of the exercise as the practical definition of a morphism; the previous two pages were carefully checking it makes sense.