Algebraic Geometry, Part II, Example Sheet 2, 2014

Assume throughout that the base field k is algebraically closed.

1. Determine the radical of the following ideals

i)
$$(xy^3, x(x-y))$$

ii)
$$(xy^3, x^2(y-3))$$

iii)
$$(x^2(y-z), xy(y-z), xz(y-z)^2)$$

- 2. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $X_1X_2^2 X_3^3 \in k[X_0, \dots, X_3]$. Find the dimension of the tangent space at all the singularities.
- 3. Consider $V = Z(I) \subset \mathbb{A}^3$ where I is generated by $X_1^3 X_3$ and $X_2^2 X_3$. Determine the points at which V is singular and compute the dimensions of the tangent spaces there.
- 4. Show that the affine quadric $\{(z_1,\ldots,z_n)\in\mathbb{C}^n\mid\sum z_i^2=1\}$ is diffeomorphic to the tangent bundle of an n-1-sphere $TS^{n-1}=\{(x,v)\in\mathbb{R}^n\times\mathbb{R}^n\mid\sum x_i^2=1,\sum v_ix_i=0\}$. [If you do not know what diffeomorphic means, just show they are homeomorphic.]
- 5. Let $X = \{ \varphi : k^2 \to k^3 \mid \varphi \text{ is linear, but } not \text{ injective} \}.$
 - i) Show X is a Zariski closed subvariety of k^6 , hence an affine algebraic variety, and compute k[X].
 - ii) Find the singular points, if any, of X. Compute $d = \dim X$.
 - iv) Show there is a birational map α from X to k^d .
- 6. Let $V \subset \mathbb{P}^2$ be defined by $X_1^2 X_2 = X_0^3$.
 - (a) Show that the formula $(u:v) \mapsto (u^2v:u^3:v^3)$ defines an morphism $\phi: \mathbb{P}^1 \to V$.
 - (b) Write down a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, regular on $U = V \setminus \{(0:0:1)\}$ which coincides with ϕ^{-1} on U. What is the geometric interpretation of ψ ?
 - (c) Show that ψ is not regular at (0:0:1).
- 7. Let $V \subset \mathbb{P}^2$ be defined by $X_1^2 X_2 = X_0^2 (X_0 + X_2)$. Find a surjective morphism $\phi \colon \mathbb{P}^1 \to V$ such that, for $P \in V$,

$$\#\phi^{-1}(P) = \begin{cases} 2 & \text{if } P = (0:0:1) \\ 1 & \text{otherwise} \end{cases}$$

Is there a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, regular on $U = V \setminus \{(0:0:1)\}$, which coincides with ϕ^{-1} on U?

8. Let V be the quadric $Z(X_0X_3=X_1X_2)\subset \mathbb{P}^3$, and H the plane $X_0=0$. Let P=(1:0:0:0). Show that $\phi=(0:X_1:X_2:X_3)$ defines a rational map $\phi\colon V\longrightarrow H$ such that for $Q\in V$, the line PQ meets H in $\phi(Q)$ whenever this is defined.

*Show that ϕ is not a morphism.

Let $V_1 = V \cap \{X_1 = X_2\}$ and $L = H \cap \{X_1 = X_2\}$. Verify explicitly that ϕ induces an isomorphism $V_1 \xrightarrow{\sim} L$.

9. * (i) Repeat the previous question for V = Z(I) where I is generated by

$$X_1^4 - X_2 X_3, \quad X_1^3 X_2 - X_3^2, \quad X_2^2 - X_1 X_3$$

* (ii) If you assumed I = I(V) in (i), justify it.

- 10. Consider the birational map $\phi \colon \mathbb{P}^2 \to \mathbb{P}^2$ given by $(X_1X_2 : X_0X_2 : X_0X_1)$, and let $P_0 = (1:0:0)$, $P_1 = (0:1:0)$ and $P_2 = (0:0:1)$ be the points, at which ϕ is not regular. Let $L \subset \mathbb{P}^2$ be a line. Show that ϕ gives a morphism $L \to \mathbb{P}^2$ such that:
 - (i) if $L \cap \{P_i\} = \emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^2 which passes through all of the $\{P_i\}$;
 - (ii) if L contains just one P_i then ϕ is an isomorphism of L with another line in \mathbb{P}^2

Determine the effect of ϕ on the cubic C with defining polynomial $X_0(X_1^2 + X_2^2) + X_1^2X_2 + X_1X_2^2$. (Assume $\operatorname{char}(k) \neq 2$.) What happens to the singularity of C? Draw appropriate pictures.

- 11. Let $\phi: X \to Y$ be a morphism of affine varieties.
 - (i) Show that for all $p \in X$, there is a linear map

$$d\phi: T_pX = Der(k[X], ev_p) \rightarrow T_{\phi(p)}Y = Der(k[Y], ev_{\phi(p)}).$$

- (ii) If ϕ is defined by an m-tuple of polynomials $(\Phi_1, \dots, \Phi_m) \in k[X]^m$, write $d\phi$ in terms of the Φ_i .
- (iii) Deduce from (i) that if $\phi: X \to Y$ is a morphism of varieties, there is a linear map $d\phi: T_pX \to T_{\phi(p)}Y$.
- 12. In this question, we will show that 'the generic hypersurface is smooth' that is, that the set of smooth hypersurfaces of degree d is dense in the variety of all hypersurfaces of degree d in \mathbb{A}^n

Let $n, d \ge 1$, and let $X = \{f \in k[x_1, \dots, x_n] \mid \deg f \le d\}$, and $Z = \{(f, p) \in X \times \mathbb{A}^n \mid f(p) = 0 \text{ and } k[x_1, \dots, x_n]/(f) \text{ is } not \text{ the ring of functions of an affine variety which is smooth at } p\}.$

(This is somewhat clumsy phrasing!)

- i) Show $X \simeq \mathbb{A}^N$ for some N [you need not determine N] and that Z is a Zariski closed subvariety of $X \times \mathbb{A}^n$.
- ii) Show that the fibers of the projection map $Z \to \mathbb{A}^N$ are linear subspaces of dimension N (n+1).

Conclude that $\dim Z = N - 1 < \dim X$.

iii) Hence show that $\{f \in X \mid \deg f = d, Z(f) \text{ smooth } \}$ is dense in X.

[Quote any theorems of lectures you need].

- 13. * The *Krull dimension* of an irreducible variety X is the maximal length of a chain of irreducible Zariski closed subvarieties, ie the maximum n such that there are irreducible closed varieties $Z_0 \subset Z_1 \subset \cdots \subset Z_n, Z_i \neq Z_{i+1}$. Show that the Krull dimension of X is the transcendence dimension,
- 14. * Finish the proof of the following theorem about dimensions, which was stated in class.

Let $\varphi: X \to Y$ be a morphism of affine algebraic varieties with X and Y irreducible, and suppose $\varphi(X)$ is dense in Y.

Show that there is an affine open neighbourhood V of Y, such that $U=\varphi^{-1}(V)$ is affine open in X, and the map $\varphi:U\to V$ factors $U\to V\times\mathbb{A}^d\to V$ with the map $U\to V\times\mathbb{A}^d$ a *finite* map, and the map $V\times\mathbb{A}^d\to V$ is the natural projection.

Conclude that for $v \in V$, the dimension of the fiber $\varphi^{-1}(v)$ is $\dim X - \dim Y$.

Finally, observe that because this is true for X, Y affine, it is true for arbitrary irreducible quasi-projective varieties X and Y with $\varphi(X)$ dense in Y.