
Part II Algebraic Geometry

Example Sheet I, 2014

1. i) Let Y be the curve y = x2. Show k[Y ] is a polynomial algebra in one variable.

ii) Let Y ′ be the curve xy = 1. Show k[Y ′] is not isomorphic to k[x], that is Y and Y ′ are not isomorphic. Find
all elements of Mor(Y, Y ′) and Mor(Y ′, Y ).

2. Let Y ⊆ A
3 be the set {(t, t2, t3) | t ∈ k}. Show Y is an affine variety, determine I(Y ), and show k[Y ] is a

polynomial algebra in one variable. Y is called the twisted cubic.

3. Let Y = Z(x2 − yz, xz − x). Show Y has 3 irreducible components. Describe them, and their prime ideals.

4. Show that if X ⊂ A
n, and Y ⊂ A

m are Zariski closed subvarieties, then X × Y ⊂ A
n+m is a Zariski closed

subvariety, by explicitly writing I(X × Y ) in terms of I(X) = (f1(x1, . . . , xn), . . . , ft(x1, . . . , xn)) and I(Y ) =
(h1(y1, . . . , ym), . . . , hs(y1, . . . , ym)).

Show that the Zariski topology on A
2 = A

1 × A
1 is not the product topology of the Zariski topologies on A

1.

5. Show that any non-empty open subset of an irreducible variety is dense. Show that if an affine variety is
Hausdorff, it is a finite set of points.

6. A topological space is called Noetherian if it satisfies the descending chain condition for closed subsets. Show
that affine algebraic varieties, with the Zariski topology, are Noetherian.

7. Let X be a topological space, and write C(X) for the algebra of continuous functions from X to C. Define maps
Z, I between subsets of X and ideals of C(X). Suppose X has the property that for every closed set F , and
p 6∈ F , there exists a f ∈ C(X) such that f(F ) = 0 and f(p) = 1.

Show that in this case Z(I(F )) = F if F is closed, and so the map I defines an injection from closed subsets to
ideals.

Show i) any subset of R
n, ii) any metric space, and iii) the Zariski topology on an affine algebraic variety (with

C(X) replaced by k[X]) all have this property.

[Remark: There is an analogue of the Nullstellensatz, due to Gelfand-Naimark, which works for locally compact
Hausdorff spaces.]

8. Let Y ⊆ A
3 be the set {(t3, t4, t5) | t ∈ k}. Show Y is an affine variety, and determine I(Y ). Show I(Y ) cannot

be generated by two elements.

9. Show there are no non-constant morphisms from A
1 to E = Z(y2 − x3 + x).

10∗. Show that one can not make A
2\{(0, 0)} into an affine variety in such a way that the inclusion map A

2\{(0, 0)} →֒
A

2 is a morphism of affine varieties.

11. Show that G = GLn(k) is an affine variety, and that the multiplication and inverse maps are morphisms of
algebraic varieties. We say G is an affine algebraic group. Show that if G is an affine algebraic group, and H is
a subgroup which is also a closed subvariety of G, then H is also an affine algebraic group.

Hence show SLn(k), On(k) = {A | AAT = I}, and the group of invertible upper triangular matrices are also
affine algebraic groups.

12. Let Matn,m denote the set of n by m matrices with coefficients in k; this is an affine variety isomorphic to A
nm.

i) Show that the set of 2 by 3 matrices of rank ≤ 1 is an affine variety.

ii) Show that the matrices of rank 2 in Mat2,3 is a Zariski open subset, but not an affine variety. [Hint: You
may do this directly, as in Q10, or you may deduce it from Q10, by finding a morphism A

2 → Mat2,3 which
takes the origin to a rank one matrix, and all other points to rank 2 matrices.]

iii) Show that matrices in Matn,m of rank ≤ r is an affine subvariety.

13. Show that the set of n by n matrices with distinct eigenvalues is an affine variety. Write its ring of functions
explicitly when n = 2.

14. Let f, g ∈ k[x, y] be polynomials, and suppose f and g have no common factor. Show there exists u, v ∈ k[x, y]
such that uf + vg is a non-zero polynomial in k[x].

Now let f ∈ k[x, y] be irreducible. The variety Z(f) is called an affine plane curve. Show that any proper
subvariety of Z(f) is finite.



15. Let G = Z/2 act on k[x, y] by sending x 7→ −x, y 7→ −y. Show the algebra of invariants k[x, y]G defines an
affine subvariety X of A

3 by explicitly computing it in terms of generators and relations. X is called the rational

doublepoint.

What is the relation of the points of X to the orbits of G on A
2?

16∗. You may assume k = C for this question.

Let Y be an affine variety, and G be a finite group. Suppose we are given an action on k[Y ] as algebra
automorphisms. This implies each element of G acts on Y as a morphism. Show that the invariants of G,
k[Y ]G are the algebra of functions on an affine variety. Denote this variety Y/G, and show that the inclusion
k[Y ]G →֒ k[Y ] gives a surjective morphism Y → Y/G. Describe the fibers of this morphism.

1. Given distinct points P0, · · · , Pn+1 in P
n = P(W), no (n+1) of which are contained in a hyperplane, show that

homogeneous coordinates may be chosen on P(W) so that P0 = (1: 0: . . . : 0), · · · , Pn = (0: . . . : 0: 1) and
Pn+1 = (1: 1: . . . : 1). [This generalises to arbitrary n a result you are very familiar with when n = 1.]

2. Given hyperplanes H0, · · · ,Hn of P
n = P(W) such that H0 ∩ . . .∩Hn = ∅, show that homogeneous coordinates

x0, · · · , xn can be chosen on P(W) such that each Hi is defined by xi = 0.

3. Show that the set of hyperplanes in P(W) is parametrized by P(W∗), where W ∗ is the dual vector space to W .
If P1, · · · , PN are points of P(W), describe the set in P(W∗) corresponding to hyperplanes not containing any
of the Pi. Deduce (assuming k infinite) that there are infinitely many such hyperplanes.

4. Let V be a hypersurface in P
n defined by a non-constant homogeneous polynomial F , and L a (projective) line

in P
n; show that V and L must meet.

5. Prove that the decomposition of a variety into irreducible components is essentially unique. Decompose the
projective variety V in P

3 defined by equations X2
2 = X1X3 ,X0X

2
3 = X3

2 into irreducible components.

6. Assume char k 6= 2.

i) Show that a homogeneous polynomial F (X0,X1,X2) of degree 2 can be written uniquely in the form x
T Ax,

where A is a 3 × 3 symmetric matrix with entries in k and x
T = (X0,X1,X2); show that the polynomial is

irreducible if and only if det(A) 6= 0. Let V ⊂ P
2 be the projective variety defined by the equation F = 0; if V

is irreducible and k algebraically closed, show that you can choose coordinates such that F = X2
0 + X2

1 + X2
2 ,

and that V is isomorphic to P
1.

ii) In contrast, show that if f(x, y) ∈ k[x, y] is an irreducible (non-homogeneous!) polynomial of degree 2, k
algebraically closed, then Z(f) is either A

1 or k∗.

7. Consider the projective plane curves corresponding to the following affine curves in A
2.

(a) y = x3 (b) xy = x6 + y6

(c) x3 = y2 + x4 + y4 (d) x2y + xy2 = x4 + y4

(e) 2x2y2 = y2 + x2 (f) y2 = f(x) with f a polynomial of degree n.

In each case, calculate the points at infinity of these curves, and find the singular points of the projective curve.

8. If F (X0,X1,X2) a homogeneous polynomial of degree m > 0, prove that mF =
2∑

i=0

Xi ∂F/∂Xi. If F is irreducible

and V ⊂ P
2 is the projective plane curve defined by F = 0. Show that the singular locus of V consists precisely

of the points P in P
2 with ∂F/∂Xi(P ) = 0 for i = 0, 1, 2.


