Algebraic Geometry, Part II, Example Sheet 2, 2012

Assume throughout that the base field k is algebraically closed.

1. Determine the radical of the following ideals

i) $(xy^3, x(x - y))$ ii) $(xy^3, x^2(y - 3))$ iii) $(x^2(y - z), xy(y - z), xz(y - z)^2)$ iv**) The Segre ideals $(z_{ij}z_{kl} - z_{il}z_{kj}), 0 \le i, k \le n, 0 \le j, l \le m$.

- 2. Determine the singular points of the surface in \mathbb{P}^3 defined by the polynomial $X_1X_2^2 X_3^3 \in k[X_0, \ldots, X_3]$. Find the dimension of the tangent space at all the singularities.
- 3. Consider $V = Z(I) \subset \mathbb{A}^3$ where I is generated by $X_1^3 X_3$ and $X_2^2 X_3$. Determine the points at which V is singular and compute the dimensions of the tangent spaces there.
- 4. Show that the affine quadric $\{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid \sum z_i^2 = 1\}$ is diffeomorphic to the tangent bundle of an n-1-sphere $TS^{n-1} = \{(x,v) \in \mathbb{R}^n \times \mathbb{R}^n \mid \sum x_i^2 = 1, \sum v_i x_i = 0\}$. [If you do not know what diffeomorphic means, just show they are homeomorphic.]
- 5. Let $X = \{ \varphi : k^2 \to k^3 \mid \varphi \text{ is linear, but not injective} \}.$

i) Show X is a Zariski closed subvariety of k^6 , hence an affine algebraic variety, and compute k[X].

ii) Find the singular points, if any, of X. Compute $d = \dim X$.

iv) Show there is a birational map α from X to k^d .

- 6. Let $V \subset \mathbb{P}^2$ be defined by $X_1^2 X_2 = X_0^3$.
 - (a) Show that the formula $(u:v) \mapsto (u^2v:u^3:v^3)$ defines an morphism $\phi: \mathbb{P}^1 \to V$.
 - (b) Write down a rational map $\psi: V \longrightarrow \mathbb{P}^1$, regular on $U = V \setminus \{(0:0:1)\}$ which coincides with ϕ^{-1} on U. What is the geometric interpretation of ψ ?
 - (c) Show that ψ is not regular at (0:0:1).
- 7. Let $V \subset \mathbb{P}^2$ be defined by $X_1^2 X_2 = X_0^2 (X_0 + X_2)$. Find a surjective morphism $\phi \colon \mathbb{P}^1 \to V$ such that, for $P \in V$,

$$\#\phi^{-1}(P) = \begin{cases} 2 & \text{if } P = (0:0:1) \\ 1 & \text{otherwise} \end{cases}$$

Is there a rational map $\psi \colon V \longrightarrow \mathbb{P}^1$, regular on $U = V \setminus \{(0:0:1)\}$, which coincides with ϕ^{-1} on U?

8. Let V be the quadric $Z(X_0X_3 = X_1X_2) \subset \mathbb{P}^3$, and H the plane $X_0 = 0$. Let P = (1:0:0:0). Show that $\phi = (0:X_1:X_2:X_3)$ defines a rational map $\phi: V \longrightarrow H$ such that for $Q \in V$, the line PQ meets H in $\phi(Q)$ whenever this is defined.

*Show that ϕ is not a morphism.

Let $V_1 = V \cap \{X_1 = X_2\}$ and $L = H \cap \{X_1 = X_2\}$. Verify explicitly that ϕ induces an isomorphism $V_1 \xrightarrow{\sim} L$.

9. * (i) Repeat the previous question for V = Z(I) where I is generated by

$$X_1^4 - X_2 X_3, \quad X_1^3 X_2 - X_3^2, \quad X_2^2 - X_1 X_3$$

* (ii) If you assumed I = I(V) in (i), justify it.

- 10. Consider the birational map $\phi \colon \mathbb{P}^2 \to \mathbb{P}^2$ given by $(X_1X_2 : X_0X_2 : X_0X_1)$, and let $P_0 = (1 : 0 : 0)$, $P_1 = (0 : 1 : 0)$ and $P_2 = (0 : 0 : 1)$ be the points, at which ϕ is not regular. Let $L \subset \mathbb{P}^2$ be a line. Show that ϕ gives a morphism $L \to \mathbb{P}^2$ such that:
 - (i) if L ∩ {P_i} = Ø then φ is an isomorphism of L with a conic in P² which passes through all of the {P_i};
 - (ii) if L contains just one P_i then ϕ is an isomorphism of L with another line in \mathbb{P}^2

Determine the effect of ϕ on the cubic *C* with defining polynomial $X_0(X_1^2 + X_2^2) + X_1^2X_2 + X_1X_2^2$. (Assume char(k) $\neq 2$.) What happens to the singularity of *C*? Draw appropriate pictures.

11. Let $\phi: X \to Y$ be a morphism of affine varieties.

(i) Show that for all $p \in X$, there is a linear map

$$d\phi: T_pX = Der(k[X], ev_p) \rightarrow T_{\phi(p)}Y = Der(k[Y], ev_{\phi(p)}).$$

(ii) If ϕ is defined by an *m*-tuple of polynomials $(\Phi_1, \ldots, \Phi_m) \in k[X]^m$, write $d\phi$ in terms of the Φ_i .

(iii) Deduce from (i) that if $\phi : X \to Y$ is a morphism of varieties, there is a linear map $d\phi : T_p X \to T_{\phi(p)} Y$.

12. * The *Krull dimension* of an irreducible variety X is the maximal length of a chain of irreducible Zariski closed subvarieties, ie the maximum n such that there are irreducible closed varieties $Z_0 \subset Z_1 \subset \cdots \subset Z_n, Z_i \neq Z_{i+1}$.

Show that the Krull dimension of X is the transcendence dimension,