Algebraic Geometry, Part II, Example Sheet 3,2009

Assume throughout that the base field k is algebraically closed. If it helps, feel free to assume throughout that it has characteristic zero.

- 1. Let P be a smooth point of the irreducible curve V. Show that if $f, g \in k(V)$ then $v_P(f+g) \ge \min(v_P(f), v_P(g))$, with equality if $v_P(f) \ne v_P(g)$.
- 2. If P is a smooth point of an irreducible curve V and $\pi_P \in \mathcal{O}_{V,P}$ is a local parameter at P, show that $\dim_k \mathcal{O}_{V,P}/(\pi_P^n) = n$ for every $n \in \mathbb{N}$.
- 3. Show that $V = Z(X_0^8 + X_1^8 + X_2^8)$ and $W = Z(Y_0^4 + Y_1^4 + Y_2^4)$ are irreducible smooth curves in \mathbb{P}^2 provided $\operatorname{char}(k) \neq 2$, and that $\phi \colon (X_i) \mapsto (X_i^2)$ is a morphism from V to W. Determine the degree of ϕ , and compute e_P for all $P \in V$.
- 4. Show that the plane cubic V = Z(F), $F = X_0 X_2^2 X_1^3 + 3X_1 X_0^2$ is smooth if $\operatorname{char}(k) \neq 2, 3$. Find the degree and ramification degrees for (i) the projection $\phi = (X_0 : X_1) : V \to \mathbb{P}^1$ (ii) the projection $\phi = (X_0 : X_2) : V \to \mathbb{P}^1$.
- 5. Show that the Finiteness Theorem fails in general for a morphism of smooth affine curves. Let $V = Z(F) \subset \mathbb{P}^2$ be the curve given by $F = X_0 X_2^2 - X_1^3$. Is V smooth? Show that

 $\phi: (Y_0:Y_1) \mapsto (Y_0^3:Y_0Y_1^2:Y_1^3)$ defines a morphism $\mathbb{P}^1 \to V$ which is a bijection, but is not an isomorphism.

- 6. (i) Let $\phi = (1:f): \mathbb{P}^1 \to \mathbb{P}^1$ be a morphism given by a nonconstant polynomial $f \in k[t] \subset k(\mathbb{P}^1)$. Show that $\deg(\phi) = \deg f$, and determine the ramification points of ϕ that is, the points $P \in \mathbb{P}^1$ for which $e_P > 1$. Do the same for a rational function $f \in k(t)$.
 - (ii) Let $\phi = (t^2 7: t^3 10): \mathbb{P}^1 \to \mathbb{P}^1$. Compute $\deg(\phi)$ and e_P for all $P \in \mathbb{P}^1$.
 - (iii) Let $f, g \in k[t]$ be coprime polynomials with $\deg(f) > \deg(g)$, and $\operatorname{char}(k) = 0$. Assume that every root of f'g g'f is a root of fg. Show that g is constant and f is a power of a linear polynomial.
 - (iv) Let $\phi \colon \mathbb{P}^1 \to \mathbb{P}^1$ be a finite morphism in characteristic zero. Suppose that every ramification point $P \in \mathbb{P}^1$ satisfies $\phi(P) \in \{0, \infty\}$. Show that $\phi = (F_0^n : F_1^n)$ for some linear forms F_i . [Hint: choose coordinates so that $\phi(0) = 0$ and $\phi(\infty) = \infty$.]
 - (v) Suppose $\operatorname{char}(k) = p \neq 0$, and let $\phi \colon \mathbb{P}^1 \to \mathbb{P}^1$ be given by $t^p t \in k(t)$. Show that ϕ has degree p and that it is only ramified at ∞ .
- 7. Let $\phi \colon V \to W$ be a finite morphism of smooth projective irreducible curves, and $D = \sum n_Q Q$ a divisor on W. Define

$$\phi^*D = \sum_{P \in V} e_P n_{\phi(P)} P \in \text{Div}(V).$$

Show that $\phi^* \colon \operatorname{Div}(W) \to \operatorname{Div}(V)$ is a homomorphism, that $\deg(\phi^*D) = \deg(\phi) \deg(D)$, and that if D is principal, so is $\phi^*(D)$. Thus ϕ^* induces a homomorphism $\operatorname{Cl}(W) \to \operatorname{Cl}(W)$.

- 8. (i) Use the Finiteness Theorem to show that if $\phi: V \to W$ is a morphism between smooth projective curves in characteristic zero which is a bijection, then ϕ is an isomorphism.
 - (ii) Let k be algebraically closed of characteristic p>0. Consider the morphism $\phi=(X_0^p:X_1^p)\colon V=\mathbb{P}^1\to W=\mathbb{P}^1$. Show that ϕ is a bijection, $k(V)/\phi^*k(W)$ is purely inseparable of degree p, and that $e_P=p$ for every $P\in V$.

- 9. Let $V \subset \mathbb{P}^2$ be a plane curve defined by an irreducible homogeneous cubic. Show that if V is not smooth, then there exists a nonconstant morphism from \mathbb{P}^1 to V.
- 10. Let V be a smooth irreducible projective curve. Let $U \subset k(V)$ be a finite-dimension k-vector subspace of k(V). Show that there exists a divisor D on V for which $U \subset \mathcal{L}(D)$.
- 11. Let V be a smooth irreducible projective curve, and $P \in V$ with $\ell(P) > 1$. Let $f \in \mathcal{L}(P)$ be nonconstant. Show that the rational map $(1:f): V \longrightarrow \mathbb{P}^1$ is an isomorphism. Deduce that if V is a smooth projective irreducible curve which is not isomorphic to \mathbb{P}^1 , then $\ell(D) \leq \deg D$ for any nonzero divisor D of positive degree.
- 12. Let P be the point at infinity on \mathbb{P}^1 and D=4P. Investigate the morphism ϕ_D . Show that there exists a smooth curve $V\subset\mathbb{P}^3$ of degree 4 which is isomorphic to \mathbb{P}^1 .
- 13. Let V be a smooth plane cubic. Assume that V has equation $X_0X_2^2=X_1(X_1-X_0)(X_1-\lambda X_0)$, for some $\lambda\in k\setminus\{0,1\}$.
 - Let P=(0:0:1) be the point at infinity in this equation. Writing $x=X_1/X_0, y=X_2/X_0$, show that x/y is a local parameter at P. [Hint: consider the affine piece $X_2 \neq 0$.] Hence compute $v_P(x)$ and $v_P(y)$. Show that for each $m \geq 1$, the space $\mathcal{L}(mP)$ has a basis consisting of functions $x^i, x^j y$, for suitable i and j, and that $\ell(mP)=m$.
- 14. Let $f \in k[x]$ a polynomial of degree d > 1 with distinct roots, and $V \subset \mathbb{P}^2$ the projective closure of the affine curve with equation $y^{d-1} = f(x)$. Assume that $\operatorname{char}(k)$ does not divide d-1. Prove that V is smooth, and has a single point P at infinity. Calculate $v_P(x)$ and $v_P(y)$.

 * Deduce (without using Riemann–Roch) that if n > d(d-3), then $\ell((n+1)P) = \ell(nP) + 1$.
- 15. Let $F(X_0, X_1, X_2)$ be an irreducible homogeneous polynomial of degree d, and let $X = Z(F) \subset \mathbb{P}^2$ be the curve it defines. Show that the degree of X is indeed d.
- 16. A smooth irreducible projective curve V is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^2 = f(x)$ and $v^2 = g(u)$ respectively, with f a square-free polynomial of even degree 2n and u = 1/x, $v = y/x^n$ in k(V). Determine the polynomial g(u) and show that the canonical class on V has degree 2n-4. Why can we not just say that V is the projective plane curve associated to the affine curve $y^2 = f(x)$?
- 17. Let $V_0 \subset \mathbb{A}^2$ be the affine curve with equation $y^3 = x^4 + 1$, and let $V \subset \mathbb{P}^2$ be its projective closure. Show that V is smooth, and has a unique point Q at infinity. Let ω be the rational differential dx/y^2 on V. Show that $v_P(\omega) = 0$ for all $P \in V_0$. prove that $v_Q(\omega) = 4$ and hence that ω , $x\omega$ and $y\omega$ are all regular on V.
- 18. Let $\theta \colon V \to V$ be a surjective morphism from an irreducible projective variety V to itself, for which the induced map on function fields is the identity. Show that $\theta = id_V$.
 - Now let V be a smooth irreducible projective curve and $\phi\colon V\to\mathbb{P}^1$ be a nonconstant morphism, such that $\phi^*\colon k(\mathbb{P}^1)\to k(V)$ is an isomorphism. Show that there exists a morphism $\psi\colon\mathbb{P}^1\to V$ such that ψ^* is inverse to ϕ^* . Deduce that ϕ is an isomorphism.