
Easter Term 2022

Optimization - Examples Sheet 2

1. Consider the problem

P : minimize 2x1 + 3x2 + 5x3 + 2x4 + 3x5 subject to x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem; solve it graphically. Deduce the optimal solution to the primal.

2. Use the simplex algorithm to solve the linear program in Question 13 on Example Sheet 1. Let

A =

 2 1 1 0 0
1 2 0 1 0
1 −1 0 0 1

 , b =

 4
4
1

 , c =


−1
−1
0
0
0

 .

Initialize the algorithm from the basic feasible solution x = (0, 0, 4, 4, 1). There are two possible
choices for the variable to enters the basis on the first step. Which is better? Compare the
objective function row of final tableaux with the solution to the dual problem.

3. Consider problem 2 above, and add the constraint x1 + 3x2 ≤ 6. Apply the simplex algorithm
putting x2 into the basis in the first step. Show that the solution at x1 = 0, x2 = 2 is degenerate.
Explain with a diagram what happens.

4. Apply the simplex algorithm to

P : minimize − x1 − 3x2 subject to x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the help of a diagram.

5. Show the following properties of two-player zero-sum games:

(a) If the payoff matrix A is anti-symmetric; i.e., A = −AT , then the value of the game is 0.

(b) Suppose the payoff matrix A is an n × n matrix with each row and column summing to s.
Show that the game has value s/n. [Hint: Guess the optimal strategy.]
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6. Two players fight a paint-gun duel: they face each other 2n − 1 paces apart and each has
a single bullet in his gun. At a signal each may fire. If either is hit or if both fire the game
ends; otherwise, both advance one pace and may again fire. The probability of either hitting his
opponent if he fires after the ith pace forward (i = 0, 1, . . . , n−1) is (i+ 1) /n. If a player survives
after his opponent has been hit his payoff is +1 and his opponent’s payoff is −1. The payoff is 0
if neither or both are hit. The guns are silent so that neither knows whether or not his opponent
has fired. Show that, if n = 4, the strategy of firing in round 2 is optimal for both, but that if

n = 5 a mixed strategy is optimal. [Hint:
(
0, 5

11
, 5
11
, 0, 1

11

)
.]

7. By considering the payoff matrix

A =


0 −2 3 0
2 0 0 −3

−3 0 0 4
0 3 −4 0

 ,

show that optimal strategies for a two-person zero-sum game are not necessarily unique. Find all
the optimal strategies.

8. Consider a two-player zero-sum game with payoff matrix

A =

(
1 4
3 2

)
.

The optimization problem for player 1 is

maximize v subject to A⊤p ≥ ve, eTp = 1, p ≥ 0.

(a) Setting p = (p1, 1 − p1), find the optimal strategies and the value of the game by drawing a
picture.

(b) Argue that the value of the game v > 0, and by substituting x = p/v, show that optimization
problem for the first player can be equivalently written as

minimize eTx subject to A⊤x ≥ e, x ≥ 0.

(c) Find the dual of the problem in (b), solve it using the simplex method, and thereby identify
the optimal strategies and value of the game. Observe that solving the dual is more convenient
since the basic feasible solution to initialize the simplex method is easily constructed.
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9. Find a ‘maximal flow’ and ‘minimal cut’ for the network below with a source at node 1 and sink
at node n.
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10. Explain how the Ford-Fulkerson algorithm can be used to find a maximum flow in an undi-
rected network. Find a maximum flow from s to t in the following network, and prove that it is
indeed optimal:
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11. Consider a network with 2n+2 nodes labelled s, a1, . . . , an, b1, . . . , bn, t. Node s is the source,
and node t is the sink. For each i = 1, . . . , n, there is an edge (s, ai) of capacity 1 from the source
s to node ai. For each j = 1, . . . , n, there is an edge (bj, t) of capacity 1 from node bj to the sink
t. All the other edges of the network are of the form (ai, bj) for some i, j = 1, . . . , n and have
infinite capacity. Finally, suppose that for every subset A ⊆ {a1, . . . , an} the number of nodes bj
such that there exists an edge (ai, bj) for some ai ∈ A is greater than or equal to |A|. Prove that
the maximal flow has value n. (This is, essentially, Hall’s marriage theorem.)

12. Suppose that a standard deck of 52 playing cards is dealt into 13 piles of 4 cards each. Show
that it is possible to select exactly one card from each pile such that the selected cards contain one
card of each of the 13 ranks Ace, 2, . . . , 10, Jack, Queen, and King. (You could consider a graph
with 80 nodes, labeled A, a1, . . . , a13, b1, . . . , b52, c1, . . . , c13, B. Let nodes b1, . . . , b52 correspond to
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the 52 cards in the deck, a1, . . . , a13 correspond to the 13 piles, and c1, . . . , c13 correspond to the 13
card ranks. A node ai is connected to a node bj if pile i contains card bj. A node bj is connected
to ck if card bj has rank k. A is connected to all ai and B is connected to all ci with capacity 1
edges. The capacities of all other edges is infinite. Show that max-flow and min-cut are equal to
13. You also might prove the result, omiting the bi nodes, but with arcs running between the ai
and ck, with exacly 4 arcs incident on each.)

13. Explain how a network flow problem can be augmented by constraints on the flow through
a vertex. Now consider the network of one-way streets between locations s and t shown below, in
which both streets and intersections are labeled with their capacities.
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Determine the maximum flow from s to t. Suppose that the capacity constraint of one of the
intersections could be removed completely by building a flyover. For which intersection should
this be done in order to increase the maximum flow as much as possible?

14. Use the transportation algorithm to solve the problem given by the following tableau. Note
that in finding an initial basic feasible solution, it may be beneficial to deviate from the procedure
described in the lecture notes and instead look for a solution with small cost.

5 4 3 1 10

5 6 9 3 11

6 3 5 7 8
3 3 9 14
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15. A taxi company wants to send n taxis to pick up n customers, one per taxi, in a way that
minimizes the sum of customers’ waiting times. The time required by taxi i to pick up customer
j is tij.

(a) Model the problem as an instance of the transportation problem. Which additional properties,
if any, should a solution satisfy? Is the optimal solution guaranteed to satisfy these properties?
Can the problem still be solved if the number of taxis exceeds the number of customers?

(b) What happens if we try to solve the problem with the transportation algorithm? Observe that
a solution with overall waiting time zero is always optimal, and show that the set of optimal
solutions does not change if we add or subtract the same value from all waiting times for a
given taxi or customer. Use these insights to solve the problem for waiting times given by

T =


5 9 3 6
8 7 8 2
6 10 12 7
3 10 8 6

 .
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